Adds two new hotkeys to open the menus for emulated USB devices- Skylanders Portal of Power and the Infinity Base. (Hotkeys only active when game is running).
Portal menu: Default is <Ctrl+P>.
Infinity base: Default is <Ctrl+I>
Added OnScreenDisplay messages to HandleAchievementTriggeredEvent to display an extra congratulations message if the player has completed (unlocked all achievements in casual) or mastered (unlocked all achievements in challenge) the game. This also uses the display name retrieved when verifying credentials, which has now been added as a member field on AchievementManager.
Added an OnScreenDisplay message to LoadGameByFilenameAsync to display a message when a player starts a game with achievements, notifying them of their current score. The score displayed is challenge points if the player is in challenge mode or challenge + casual if the player is in casual mode. A second message tells the player which mode they are in. To match RetroAchievements' website interface, the messages are blue for casual and gold for challenge.
Added a TallyScore method to AchievementManager to calculate the player's current scores (soft and hard) against the total number of points across all achievements. Includes a PointSpread structure to hold all points and counts. The Unlock Map now includes point values for each achievement to aid in this calculation; this is populated at insert time, and Unofficial achievements are tallied as zero.
Added HandleLeaderboardStartedEvent with an OnScreenDisplay message when a player has triggered a leaderboard's failure conditions. The message includes the title of the achievement.
Added HandleLeaderboardStartedEvent with an OnScreenDisplay message when a player has triggered a leaderboard's start conditions. The message includes the title of the achievement.
Added an OnScreenDisplay message to HandleLeaderboardTriggeredEvent to display a message when a player has completed a leaderboard. The message includes the title of the achievement and the player's score/time.
Added an OnScreenDisplay message to HandleAchievementTriggeredEvent to display a message when a player has unlocked an achievement. The message includes the title of the achievement and its point value based on the game data. To match RetroAchievements' website interface, the message is blue if the unlock is casual and gold for challenge.
This warning came about after 46ad8b9d68
In file included from /home/ports/pobj/dolphin-5.0.0.20230429/dolphin-5.0.0.20230429/Source/Core/Core/IOS/WFS/WFSI.cpp:4:
/home/ports/pobj/dolphin-5.0.0.20230429/dolphin-5.0.0.20230429/Source/Core/Core/IOS/WFS/WFSI.h:54:6: warning: private field 'm_aes_key' is not used [-Wunused-private-field]
u8 m_aes_key[0x10] = {};
^
By using a shm memory segment for the fast_block_map that is sparsely
allocated (i.e. on write by the OS) instead of a statically allocated
array we can make the block lookup faster by:
* Having a bigger space available for lookup that doesn't take up
too much memory, because the OS will only allocate the needed
pages when written to.
* Decrease the time spent to lookup a block in the assembly dispatcher
due to less comparisions and shorter code (for example the pc check
has been entirely dropped since only the msrBits need to be validated).
When the JIT block cache is full the shm segment will also be released
and reallocated to avoid allocating too much memory. It will also be
reset when the instruction cache is flushed by the PPC code to avoid
having stale entries.
Also fallback to the original method in case the memory segment couldn't
be allocated.
FSCore implements the core functionality that can also be used outside of emulation. FSDevice implements the IOS device and is only available during emulation.
ESCore implements the core functionality that can also be used outside of emulation. ESDevice implements the IOS device and is only available during emulation.
DoFrame is a function called every frame by the emulator so that rcheevos can be properly updated and processed. It requires a memory peeker and an event handler to be passed in; the memory peeker is called repeatedly each frame to measure what's in memory and compare to achievement definitions, and any events thrown by that comparison are sent to the event handler.
Also, DoFrame checks for the current system time to determine when to ping rich presence. Rich Presence on the RetroAchievements website updates every two minutes, so if two minutes have elapsed since the previous ping, another ping is sent.
GenerateRichPresence calls rc_runtime_get_richpresence in rhceevos on the achievement runtime to get the current Rich Presence string, a description of the player's current in-game state based on its memory as fed into a custom-developed script downloaded via FetchGameData. This gets passed into PingRichPresence, but is separated into its own method so it can be used elsewhere locally.
MemoryPeeker is a function passed by pointer into rcheevos DoFrame functionality that forms the lynchpin of the rcheevos runtime - it provides the interface by which rcheevos accesses memory and determines if the fields provided by achievement, leaderboard, and rich presence definitions are meeting the criteria needed.
AchievementEventHandler simply checks which kind of event is triggered and calls the appropriate function. Its primary purpose is as a function to be pointed to.
HandleAchievementTriggeredEvent is an asynchronous method that processes an event and places a synchronous AwardAchievement call on the work queue. In the process, it also updates the unlock map and makes the ActivateDeactivateAchievement call to determine and adjust the achievement's current active state.
PingRichPresence makes a "ping" API request to the RetroAchievements website with the provided RichPresence string parameter. While there has been talk about tying ping in with session, in its current state the primary purpose of ping is to send the player's Rich Presence to the website.
AwardAchievement performs the API call to notify the site that an achievement has been unlocked. As one of the parameters is the game hash (something I overlooked previously; I thought it was the game ID) this change also moves the game hash into a member field.
This fixes a crash I found in the Request function of AchievementManager where under certain conditions init_request would return an api_request with null post data, and Post would crash if it attempted to access it. Now the function aborts before the Post and returns an INVALID_REQUEST response type.
PR #11183 regressed the lookup table reconstruction and, for some reason, added an else clause that clobbered the dCache whenever dCache emulation is turned on.
RetroAchievements Rich Presence is a script that is run periodically on a game's memory to provide a detailed text description of what the player is doing. Existing Discord presence on Dolphin would update a player's Discord status to say not just that they are using Dolphin but that they are playing, for example, Sonic Adventure 2 Battle; Rich Presence would detail that the player is in City Escape with 5 lives and 142 rings.
Activating this in the runtime simply entails loading that text script, as returned by the FetchGameData API call, into the runtime, here only determined by whether rich presence is enabled in the achievement settings. Deactivating this is done via the same rcheevos method by setting the rich presence to an empty string.
This activates or deactivates leaderboards in the rcheevos runtime similarly to achievements. The logic is much more straightforward - all leaderboards are active together; there is nothing requiring some leaderboards to be active while others are unactive, and even a leaderboard that has been submitted to in this session is still active to be submitted to again. The only criteria are that leaderboards must be enabled in the settings, and hardcore mode must be on, the latter of which is false until a future PR.
LoadUnlockData and ActivateDeactivateAchievements are the public API components responding to the FetchUnlocks and A/DAchievement (singular) private methods.
LoadUnlockData is asynchronous and performs both a hardcore and a softcore unlock call, updating the unlock map and the active status of any achievements returned from these calls.
ActivateDeactivateAchievements calls ActivateDeactivateAchievement on every achievement ID found in m_game_data, initializing the unlock map for each ID if not already found.
Both of these are currently called in LoadGameByFilenameAsync once the game has been loaded properly. There's a lock around this, to ensure that the unlock map is initialized properly by ActivateDeactivate Achievements before FetchUnlockData makes modifications to it without stalling the async portions of FetchUnlockData.
FetchUnlockData is an API call to RetroAchievements that downloads a list of achievement IDs for a game that the user has already unlocked and published to the site. It accepts a parameter for whether or not hardcore or softcore achievements are being requested, so that must be provided as well. Once it has the requested list on hand, it updates each achievement's status in the unlock map and will activate or deactivate achievements as necessary.
ActivateDeactivateAchievement is passed an Achievement ID as returned from the FetchGameData API call and determines whether to activate it, deactivate it, or leave it where it is based on its current known state and what settings are enabled.
Activating or deactivating an achievement entails calling a method provided by rcheevos that performs this on the rcheevos runtime. Activating an achievement loads its memory signature into the runtime; now the runtime will process the achievement each time the rc_runtime_do_frame function is called (this will be in a future PR) to determine when the achievement's requirements are met. Deactivating an achievement unloads it from the runtime.
The specific logic to determine whether an achievement is active operates over many fields but is documented in detail inside the function. There are multiple settings flags for which achievements are enabled (one flag for all achievements, an "unofficial" flag for enabling achievements marked as unofficial i.e. those that have logic on the site but have not yet been officially approved, and an "encore" flag that enables achievements the player has already unlocked) and this function also evaluates whether the achievement has been unlocked in hardcore mode or softcore mode (though currently every reference to the current hardcore mode state is hardcoded as false).
LoadGameByFilenameAsync sets up a volume reader and hashes the volume, then uses that hash to make the three consecutive API requests to resolve hash, start session and load game data.
CloseGame resets the m_is_game_loaded flag, wipes the queue, and destroys all the game data responses.
FetchGameData is the big one - this retrieves the logic for all the achievements, leaderboards, and rich presence, and all the relevant metadata for the game.
Added a call to the RetroAchievements Start Session API to AchievementManager. This is primarily for client-side activation, so it doesn't return much of value, aside from its success/error information, but I'm storing the return structure in case this changes in the future.
Added the ResolveHash method to AchievementManager. This is a blocking function to send a hash string to the RetroAchievements server to verify it and get a game ID back.
This was previously copying each pair out of the vector returned by
GetInterfaceListInternal() when we just need to emplace the first entry
of each pair.
The inst.SIMM_16 change is for readability (though it also fixes a warning about potentially unintended uses of `||`).
The fallback change is because `b` is only meaningful for indexed instructions; this could theoretically lead to unintended fallbacks (but it seems unlikely).
Added AchievementManager class. Upon startup (currently only in DolphinQt), logs into RetroAchievements with the login credentials stored in achievements.ini.
Co-authored-by: AdmiralCurtiss <AdmiralCurtiss@users.noreply.github.com>
Added AchievementSettings in Config with RA_INTEGRATION_ENABLED, RA_USERNAME, and RA_API_TOKEN. Includes code to load and store from Achievements.ini file in config folder.
Adds the rcheevos library from RetroAchievements to the Dolphin Externals as a submodule. Change was verified to import correctly and build both via Visual Studio and via cmake ninja.
We have these for a reason. I think this also fixes a theoretical
problem when `ABI_PARAM1 == loop_counter` where the first MOV destroys
the second's value; I'm not sure if this can actually happen in practice
though.
Will manually controlling both an accelerometer and a gyroscope at the
same time be reasonable to do? No idea. Was this easy to implement
thanks to the input override system? Yes.
Fixes https://bugs.dolphin-emu.org/issues/12443.
Up until now, there have been two settings on Android that stored the
selected Wii Remote extension: the normal one that's also used on PC,
and a SharedPreferences one that's used by the overlay controls to
determine what controls to show. It is possible for these two to end up
out of sync, and my input changes have made that more likely to happen.
To fix this, let's rework how the overlay controller setting works.
We don't want it to encode the currently selected Wii Remote extension.
However, we can't simply get rid of the setting, because for some Wii
games we need the ability to switch between a GameCube controller and a
Wii Remote. What this commit does is give the user the option to select
any of the 4 GameCube controllers and any of the 4 Wii Remotes. (Before,
controllers 2-4 weren't available in the overlay.) Could be useful for
things like the Psycho Mantis fight in Metal Gear Solid. I'm also
switching from SharedPreferences to Dolphin.ini while I'm at it.
This is a small regression from KillRenderer, which caused duplicated
frames to be counted on the FPS counter when the "Skip Presenting
Duplicated Frames" option was disabled.
This way, Android (which will show groups in the order they're defined)
will show groups in a more logical order similar to DolphinQt.
The main thing that was annoying me was how early Rumble was for
Wii Remotes. Some of the other changes I'm making in this commit,
like the order of Shake/Tilt/Swing, are more arbitrary and were
made for consistency with DolphinQt. But there are also places
where I didn't go all the way with matching DolphinQt. Most notably,
DolphinQt puts sticks before buttons, but I don't see any reason
to do that for Android.
Unlike PCs, Android doesn't really have any input method (not counting
touch) that can reasonably be expected to exist on most devices.
Because of this, I don't think shipping with a default mapping for the
buttons and sticks of GameCube controllers and Wii Remotes makes sense.
I would however like to ship default mappings for a few things:
1. Mapping the Wii Remote's accelerometer and gyroscope to the device's
accelerometer and gyroscope. This functionality is useful mainly
for people who use the touchscreen, but can also be useful when
using a clip-on controller. The disadvantage of having this mapped
by default is that games disable pointer input if the accelerometer
reports that the Wii Remote is pointed at the ceiling.
2. Mapping GC keyboards for use with a physical keyboard, like on PC.
After all, there's no other way of mapping them that makes sense.
3. Mapping rumble to the device's vibrator.
Aside from the GC keyboards, this approach is effectively the same as
what we were doing before the input overhaul.
This second stack leads to JNI problems on Android, because ART fetches
the address and size of the original stack using pthread functions
(see GetThreadStack in art/runtime/thread.cc), and (presumably) treats
stack addresses outside of the original stack as invalid. (What I don't
understand is why some JNI operations on the CPU thread work fine
despite this but others don't.)
Instead of creating a second stack, let's borrow the approach ART uses:
Use pthread functions to find out the stack's address and size, then
install guard pages at an appropriate location. This lets us get rid
of a workaround we had in the MsgAlert function.
Because we're no longer choosing the stack size ourselves, I've made some
tweaks to where the put the guard pages. Previously we had a stack of
2 MiB and a safe zone of 512 KiB. We now accept stacks as small as 512 KiB
(used on macOS) and use a safe zone of 256 KiB. I feel like this should
be fine, but haven't done much testing beyond "it seems to work".
By the way, on Windows it was already the case that we didn't create
a second stack... But there was a bug in the implementation!
The code for protecting the stack has to run on the CPU thread, since
it's the CPU thread's stack we want to protect, but it was actually
running on EmuThread. This commit fixes that, since now this bug
matters on other operating systems too.
This broke formatting the system memory; see https://bugs.dolphin-emu.org/issues/13176. After calling ticket.DeleteTicket(), ticket.m_bytes was 0-length, but calling ticket.IsV1Ticket() still attempted to read from m_bytes.
This was introduced in 2fd9852ca8, although it didn't actually cause a crash until 929fba08e7.
When faced with this error, users often don't try disabling dual core,
even though the error message suggests it. Perhaps the message is just
too long and lists too many things?
To try to improve the situation, I'm rewording the message and making it
say different things depending on what settings you are using.
The LEA that the signal handler is trying to undo the effects of is a
32-bit instruction, and the value in the register prior to the LEA is
also 32-bit, so the signal handler should use a 32-bit write.
(Actually, in the end this doesn't really matter, because the first
instruction that reads this value after backpatching is also a 32-bit
instruction...)
This fixes a regression from 592ba31. When `a` was a constant 0 and `b`
was a non-constant 0x80000000, the 32-bit negation operation would
overflow, causing an incorrect result. The sign extension needs to happen
before the negation to avoid overflow.
Note that I can't merge the SXTW and NEG into one instruction.
NEG is an alias for SUB with the first operand being set to ZR,
but "SUB (extended register)" treats register 31 as SP instead of ZR.
I've also changed the order for the case where `a` is a constant
0xFFFFFFFF. I don't think the order actually affects correctness here,
but let's use the same order for all the cases since it makes the code
easier to reason about.
The previous code only updated the PLRU on cache misses, which made it so that the least recently inserted cache block was evicted, instead of the least recently used/hit one.
This regressed in 9d39647f9e (part of #11183, but it was fine in e97d380437), although beforehand it was only implemented for the instruction cache, and the instruction cache hit extremely infrequently when the JIT or cached interpreter is in use, which generally keeps it from behaving correctly (the pure interpreter behaves correctly with it).
I'm not aware of any games that are affected by this, though I did not do extensive testing.
Previously we would only backpatch overflowed address calculations
if the overflow was 0x1000 or less. Now we can handle the full 2 GiB
of overflow in both directions.
I'm also making equivalent changes to JitArm64's code. This isn't because
it needs it – JitArm64 address calculations should never overflow – but
because I wanted to get rid of the 0x100001000 inherited from Jit64 that
makes even less sense for JitArm64 than for Jit64.
This fixes a problem I was having where using frame advance with the
debugger open would frequently cause panic alerts about invalid addresses
due to the CPU thread changing MSR.DR while the host thread was trying
to access memory.
To aid in tracking down all the places where we weren't properly locking
the CPU, I've created a new type (in Core.h) that you have to pass as a
reference or pointer to functions that require running as the CPU thread.