dolphin/Source/Core/Core/PowerPC/PowerPC.cpp
aldelaro5 09df343247 Move Memchecks support out of debug only builds
It wouldn't impact performance until at least one memcheck is enabled.  Because of this, it can be used in release builds without much impact, the only thing that woudl change is the use of HasAny method instead of preprocessor conditionals.  Since the perforamnce decrease comes right when the first memcheck is added and restored when the last is removed, it basically is all beneficial and works the same way.
2016-09-09 15:05:54 -04:00

515 lines
13 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Common/Assert.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/FPURoundMode.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Core/ConfigManager.h"
#include "Core/CoreTiming.h"
#include "Core/HW/CPU.h"
#include "Core/HW/Memmap.h"
#include "Core/HW/SystemTimers.h"
#include "Core/Host.h"
#include "Core/PowerPC/CPUCoreBase.h"
#include "Core/PowerPC/Interpreter/Interpreter.h"
#include "Core/PowerPC/JitInterface.h"
#include "Core/PowerPC/PPCTables.h"
#include "Core/PowerPC/PowerPC.h"
namespace PowerPC
{
// STATE_TO_SAVE
PowerPCState ppcState;
static CPUCoreBase* s_cpu_core_base = nullptr;
static bool s_cpu_core_base_is_injected = false;
Interpreter* const s_interpreter = Interpreter::getInstance();
static CoreMode s_mode = MODE_INTERPRETER;
Watches watches;
BreakPoints breakpoints;
MemChecks memchecks;
PPCDebugInterface debug_interface;
static CoreTiming::EventType* s_invalidate_cache_thread_safe;
static void InvalidateCacheThreadSafe(u64 userdata, s64 cyclesLate)
{
ppcState.iCache.Invalidate(static_cast<u32>(userdata));
}
u32 CompactCR()
{
u32 new_cr = 0;
for (int i = 0; i < 8; i++)
{
new_cr |= GetCRField(i) << (28 - i * 4);
}
return new_cr;
}
void ExpandCR(u32 cr)
{
for (int i = 0; i < 8; i++)
{
SetCRField(i, (cr >> (28 - i * 4)) & 0xF);
}
}
void DoState(PointerWrap& p)
{
// some of this code has been disabled, because
// it changes registers even in MODE_MEASURE (which is suspicious and seems like it could cause
// desyncs)
// and because the values it's changing have been added to CoreTiming::DoState, so it might
// conflict to mess with them here.
// rSPR(SPR_DEC) = SystemTimers::GetFakeDecrementer();
// *((u64 *)&TL) = SystemTimers::GetFakeTimeBase(); //works since we are little endian and TL
// comes first :)
p.DoPOD(ppcState);
// SystemTimers::DecrementerSet();
// SystemTimers::TimeBaseSet();
JitInterface::DoState(p);
}
static void ResetRegisters()
{
memset(ppcState.ps, 0, sizeof(ppcState.ps));
memset(ppcState.gpr, 0, sizeof(ppcState.gpr));
memset(ppcState.spr, 0, sizeof(ppcState.spr));
/*
0x00080200 = lonestar 2.0
0x00088202 = lonestar 2.2
0x70000100 = gekko 1.0
0x00080100 = gekko 2.0
0x00083203 = gekko 2.3a
0x00083213 = gekko 2.3b
0x00083204 = gekko 2.4
0x00083214 = gekko 2.4e (8SE) - retail HW2
*/
ppcState.spr[SPR_PVR] = 0x00083214;
ppcState.spr[SPR_HID1] = 0x80000000; // We're running at 3x the bus clock
ppcState.spr[SPR_ECID_U] = 0x0d96e200;
ppcState.spr[SPR_ECID_M] = 0x1840c00d;
ppcState.spr[SPR_ECID_L] = 0x82bb08e8;
ppcState.fpscr = 0;
ppcState.pc = 0;
ppcState.npc = 0;
ppcState.Exceptions = 0;
for (auto& v : ppcState.cr_val)
v = 0x8000000000000001;
TL = 0;
TU = 0;
SystemTimers::TimeBaseSet();
// MSR should be 0x40, but we don't emulate BS1, so it would never be turned off :}
ppcState.msr = 0;
rDEC = 0xFFFFFFFF;
SystemTimers::DecrementerSet();
}
void Init(int cpu_core)
{
// NOTE: This function runs on EmuThread, not the CPU Thread.
// Changing the rounding mode has a limited effect.
FPURoundMode::SetPrecisionMode(FPURoundMode::PREC_53);
s_invalidate_cache_thread_safe =
CoreTiming::RegisterEvent("invalidateEmulatedCache", InvalidateCacheThreadSafe);
memset(ppcState.sr, 0, sizeof(ppcState.sr));
ppcState.pagetable_base = 0;
ppcState.pagetable_hashmask = 0;
for (int tlb = 0; tlb < 2; tlb++)
{
for (int set = 0; set < 64; set++)
{
ppcState.tlb[tlb][set].recent = 0;
for (int way = 0; way < 2; way++)
{
ppcState.tlb[tlb][set].paddr[way] = 0;
ppcState.tlb[tlb][set].pte[way] = 0;
ppcState.tlb[tlb][set].tag[way] = TLB_TAG_INVALID;
}
}
}
ResetRegisters();
PPCTables::InitTables(cpu_core);
// We initialize the interpreter because
// it is used on boot and code window independently.
s_interpreter->Init();
switch (cpu_core)
{
case PowerPC::CORE_INTERPRETER:
s_cpu_core_base = s_interpreter;
break;
default:
s_cpu_core_base = JitInterface::InitJitCore(cpu_core);
if (!s_cpu_core_base) // Handle Situations where JIT core isn't available
{
WARN_LOG(POWERPC, "Jit core %d not available. Defaulting to interpreter.", cpu_core);
s_cpu_core_base = s_interpreter;
}
break;
}
if (s_cpu_core_base != s_interpreter)
{
s_mode = MODE_JIT;
}
else
{
s_mode = MODE_INTERPRETER;
}
ppcState.iCache.Init();
if (SConfig::GetInstance().bEnableDebugging)
breakpoints.ClearAllTemporary();
}
void ScheduleInvalidateCacheThreadSafe(u32 address)
{
if (CPU::GetState() == CPU::State::CPU_RUNNING)
CoreTiming::ScheduleEvent(0, s_invalidate_cache_thread_safe, address,
CoreTiming::FromThread::NON_CPU);
else
PowerPC::ppcState.iCache.Invalidate(static_cast<u32>(address));
}
void Shutdown()
{
InjectExternalCPUCore(nullptr);
JitInterface::Shutdown();
s_interpreter->Shutdown();
s_cpu_core_base = nullptr;
}
CoreMode GetMode()
{
return !s_cpu_core_base_is_injected ? s_mode : MODE_INTERPRETER;
}
static void ApplyMode()
{
switch (s_mode)
{
case MODE_INTERPRETER: // Switching from JIT to interpreter
s_cpu_core_base = s_interpreter;
break;
case MODE_JIT: // Switching from interpreter to JIT.
// Don't really need to do much. It'll work, the cache will refill itself.
s_cpu_core_base = JitInterface::GetCore();
if (!s_cpu_core_base) // Has a chance to not get a working JIT core if one isn't active on host
s_cpu_core_base = s_interpreter;
break;
}
}
void SetMode(CoreMode new_mode)
{
if (new_mode == s_mode)
return; // We don't need to do anything.
s_mode = new_mode;
// If we're using an external CPU core implementation then don't do anything.
if (s_cpu_core_base_is_injected)
return;
ApplyMode();
}
const char* GetCPUName()
{
return s_cpu_core_base->GetName();
}
void InjectExternalCPUCore(CPUCoreBase* new_cpu)
{
// Previously injected.
if (s_cpu_core_base_is_injected)
s_cpu_core_base->Shutdown();
// nullptr means just remove
if (!new_cpu)
{
if (s_cpu_core_base_is_injected)
{
s_cpu_core_base_is_injected = false;
ApplyMode();
}
return;
}
new_cpu->Init();
s_cpu_core_base = new_cpu;
s_cpu_core_base_is_injected = true;
}
void SingleStep()
{
s_cpu_core_base->SingleStep();
}
void RunLoop()
{
Host_UpdateDisasmDialog();
s_cpu_core_base->Run();
Host_UpdateDisasmDialog();
}
void UpdatePerformanceMonitor(u32 cycles, u32 num_load_stores, u32 num_fp_inst)
{
switch (MMCR0.PMC1SELECT)
{
case 0: // No change
break;
case 1: // Processor cycles
PowerPC::ppcState.spr[SPR_PMC1] += cycles;
break;
default:
break;
}
switch (MMCR0.PMC2SELECT)
{
case 0: // No change
break;
case 1: // Processor cycles
PowerPC::ppcState.spr[SPR_PMC2] += cycles;
break;
case 11: // Number of loads and stores completed
PowerPC::ppcState.spr[SPR_PMC2] += num_load_stores;
break;
default:
break;
}
switch (MMCR1.PMC3SELECT)
{
case 0: // No change
break;
case 1: // Processor cycles
PowerPC::ppcState.spr[SPR_PMC3] += cycles;
break;
case 11: // Number of FPU instructions completed
PowerPC::ppcState.spr[SPR_PMC3] += num_fp_inst;
break;
default:
break;
}
switch (MMCR1.PMC4SELECT)
{
case 0: // No change
break;
case 1: // Processor cycles
PowerPC::ppcState.spr[SPR_PMC4] += cycles;
break;
default:
break;
}
if ((MMCR0.PMC1INTCONTROL && (PowerPC::ppcState.spr[SPR_PMC1] & 0x80000000) != 0) ||
(MMCR0.PMCINTCONTROL && (PowerPC::ppcState.spr[SPR_PMC2] & 0x80000000) != 0) ||
(MMCR0.PMCINTCONTROL && (PowerPC::ppcState.spr[SPR_PMC3] & 0x80000000) != 0) ||
(MMCR0.PMCINTCONTROL && (PowerPC::ppcState.spr[SPR_PMC4] & 0x80000000) != 0))
PowerPC::ppcState.Exceptions |= EXCEPTION_PERFORMANCE_MONITOR;
}
void CheckExceptions()
{
u32 exceptions = ppcState.Exceptions;
// Example procedure:
// set SRR0 to either PC or NPC
// SRR0 = NPC;
// save specified MSR bits
// SRR1 = MSR & 0x87C0FFFF;
// copy ILE bit to LE
// MSR |= (MSR >> 16) & 1;
// clear MSR as specified
// MSR &= ~0x04EF36; // 0x04FF36 also clears ME (only for machine check exception)
// set to exception type entry point
// NPC = 0x00000x00;
// TODO(delroth): Exception priority is completely wrong here: depending on
// the instruction class, exceptions should be executed in a given order,
// which is very different from the one arbitrarily chosen here. See §6.1.5
// in 6xx_pem.pdf.
if (exceptions & EXCEPTION_ISI)
{
SRR0 = NPC;
// Page fault occurred
SRR1 = (MSR & 0x87C0FFFF) | (1 << 30);
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000400;
INFO_LOG(POWERPC, "EXCEPTION_ISI");
ppcState.Exceptions &= ~EXCEPTION_ISI;
}
else if (exceptions & EXCEPTION_PROGRAM)
{
SRR0 = PC;
// say that it's a trap exception
SRR1 = (MSR & 0x87C0FFFF) | 0x20000;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000700;
INFO_LOG(POWERPC, "EXCEPTION_PROGRAM");
ppcState.Exceptions &= ~EXCEPTION_PROGRAM;
}
else if (exceptions & EXCEPTION_SYSCALL)
{
SRR0 = NPC;
SRR1 = MSR & 0x87C0FFFF;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000C00;
INFO_LOG(POWERPC, "EXCEPTION_SYSCALL (PC=%08x)", PC);
ppcState.Exceptions &= ~EXCEPTION_SYSCALL;
}
else if (exceptions & EXCEPTION_FPU_UNAVAILABLE)
{
// This happens a lot - GameCube OS uses deferred FPU context switching
SRR0 = PC; // re-execute the instruction
SRR1 = MSR & 0x87C0FFFF;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000800;
INFO_LOG(POWERPC, "EXCEPTION_FPU_UNAVAILABLE");
ppcState.Exceptions &= ~EXCEPTION_FPU_UNAVAILABLE;
}
else if (exceptions & EXCEPTION_FAKE_MEMCHECK_HIT)
{
ppcState.Exceptions &= ~EXCEPTION_DSI & ~EXCEPTION_FAKE_MEMCHECK_HIT;
}
else if (exceptions & EXCEPTION_DSI)
{
SRR0 = PC;
SRR1 = MSR & 0x87C0FFFF;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000300;
// DSISR and DAR regs are changed in GenerateDSIException()
INFO_LOG(POWERPC, "EXCEPTION_DSI");
ppcState.Exceptions &= ~EXCEPTION_DSI;
}
else if (exceptions & EXCEPTION_ALIGNMENT)
{
// This never happens ATM
// perhaps we can get dcb* instructions to use this :p
SRR0 = PC;
SRR1 = MSR & 0x87C0FFFF;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000600;
// TODO crazy amount of DSISR options to check out
INFO_LOG(POWERPC, "EXCEPTION_ALIGNMENT");
ppcState.Exceptions &= ~EXCEPTION_ALIGNMENT;
}
// EXTERNAL INTERRUPT
else
{
CheckExternalExceptions();
}
}
void CheckExternalExceptions()
{
u32 exceptions = ppcState.Exceptions;
// EXTERNAL INTERRUPT
if (exceptions && (MSR & 0x0008000)) // Handling is delayed until MSR.EE=1.
{
if (exceptions & EXCEPTION_EXTERNAL_INT)
{
// Pokemon gets this "too early", it hasn't a handler yet
SRR0 = NPC;
SRR1 = MSR & 0x87C0FFFF;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000500;
INFO_LOG(POWERPC, "EXCEPTION_EXTERNAL_INT");
ppcState.Exceptions &= ~EXCEPTION_EXTERNAL_INT;
_dbg_assert_msg_(POWERPC, (SRR1 & 0x02) != 0, "EXTERNAL_INT unrecoverable???");
}
else if (exceptions & EXCEPTION_PERFORMANCE_MONITOR)
{
SRR0 = NPC;
SRR1 = MSR & 0x87C0FFFF;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000F00;
INFO_LOG(POWERPC, "EXCEPTION_PERFORMANCE_MONITOR");
ppcState.Exceptions &= ~EXCEPTION_PERFORMANCE_MONITOR;
}
else if (exceptions & EXCEPTION_DECREMENTER)
{
SRR0 = NPC;
SRR1 = MSR & 0x87C0FFFF;
MSR |= (MSR >> 16) & 1;
MSR &= ~0x04EF36;
PC = NPC = 0x00000900;
INFO_LOG(POWERPC, "EXCEPTION_DECREMENTER");
ppcState.Exceptions &= ~EXCEPTION_DECREMENTER;
}
else
{
_dbg_assert_msg_(POWERPC, 0, "Unknown EXT interrupt: Exceptions == %08x", exceptions);
ERROR_LOG(POWERPC, "Unknown EXTERNAL INTERRUPT exception: Exceptions == %08x", exceptions);
}
}
}
void CheckBreakPoints()
{
if (PowerPC::breakpoints.IsAddressBreakPoint(PC))
{
CPU::Break();
if (PowerPC::breakpoints.IsTempBreakPoint(PC))
PowerPC::breakpoints.Remove(PC);
}
}
} // namespace
// FPSCR update functions
void UpdateFPRF(double dvalue)
{
FPSCR.FPRF = MathUtil::ClassifyDouble(dvalue);
// if (FPSCR.FPRF == 0x11)
// PanicAlert("QNAN alert");
}