Replaces old and simple usages of std::atomic<bool> with Common::Flag
(which was introduced after the initial usage), so it's clear that
the variable is a flag and because Common::Flag is well tested.
This also replaces the ready logic in WiimoteReal with Common::Event
since it was basically just unnecessarily reimplementing Common::Event.
This changes Refresh() to use the existing scanning thread to scan for
devices, instead of running the scan on the UI thread and blocking it.
Also makes the UI thread not block when Continuous Scanning is disabled
and removes duplicated code.
Should fix issue 8992.
Under the hood:
* The scanning thread is now always active, even when continuous
scanning is disabled.
* The initialize code which waits for Wiimotes to be connected also
uses the scanning thread instead of scanning on yet another thread.
* The scanning thread now always checks for disconnected devices, to
avoid Dolphin thinking a Wiimote is still connected when it isn't. So
we now check if we need new Wiimotes or a Balance Board at scan time.
Fully opt-in, reports to analytics.dolphin-emu.org over SSL. Collects system
information and settings at Dolphin start time and game start time.
UI not implemented yet, so users are required to opt in through config editing.
EndPlayInput runs on the CPU thread so it can't directly call
UpdateWantDeterminism. PlayController also tries to ChangeDisc
from the CPU Thread which is also invalid. It now just pauses
execution and posts a request to the Host to fix it instead.
The Core itself also did dodgy things like PauseAndLock-ing
from the CPU Thread and SetState from EmuThread which have been
removed.
Fix Frame Advance and FifoPlayer pause/unpause/stop.
CPU::EnableStepping is not atomic but is called from multiple threads
which races and leaves the system in a random state; also instruction
stepping was unstable, m_StepEvent had an almost random value because
of the dual purpose it served which could cause races where CPU::Run
would SingleStep when it was supposed to be sleeping.
FifoPlayer never FinishStateMove()d which was causing it to deadlock.
Rather than partially reimplementing CPU::Run, just use CPUCoreBase
and then call CPU::Run(). More DRY and less likely to have weird bugs
specific to the player (i.e the previous freezing on pause/stop).
Refactor PowerPC::state into CPU since it manages the state of the
CPU Thread which is controlled by CPU, not PowerPC. This simplifies
the architecture somewhat and eliminates races that can be caused by
calling PowerPC state functions directly instead of using CPU's
(because they bypassed the EnableStepping lock).
CBoot::BootUp() did call CoreTiming::Advance which itself blocks on the GPU,
but the GPU thread wasn't started already. This commit moves the SyncGPU
initialization into the Fifo.cpp file and call it after BootUp().
We don't throttle by frames, we throttle by coretiming speed.
So looking up VI for calculating the speed was just very wrong.
The new ini option is a float, 1.0f for fullspeed.
In the GUI, percentual values are used.
This addresses a bit of thread unsafety mentioned in a comment, and
fixes a 'ScheduleEvent_Threadsafe from main thread' message.
To make this work nicely, make PauseAndLock call DeclareAsCPUThread -
i.e. while you have the CPU thread locked, you can consider yourself the
CPU thread.
I tried to change messages that contained instructions for users,
while avoiding messages that are so technical that most users
wouldn't understand them even if they were in the right language.
Eventually, netplay will be able to use the host's NAND, but this could
still be useful in some cases; for TAS it definitely makes sense to have
a way to avoid using any preexisting NAND.
In terms of implementation: remove D_WIIUSER_IDX, which was just WIIROOT
+ "/", as well as some other indices which are pointless to have as
separate variables rather than just using the actual path (fixed, since
they're actual Wii NAND paths) at the call site. Then split off
D_SESSION_WIIROOT_IDX, which can point to the dummy NAND directory, from
D_WIIROOT_IDX, which always points to the "real" one the user
configured.
We had to lock audiocommon with the old asynchron HLE audio emulation,
now our Mixer is just a plain FIFO which may underrun.
Of course, this will stutter, but underruning the audio backend is likely worse.