mirror of
https://github.com/Retropex/custom-ocean.xyz-dashboard.git
synced 2025-05-12 19:20:45 +02:00
Update data_service.py
This commit is contained in:
parent
6331ea2737
commit
f4a4da4679
340
data_service.py
340
data_service.py
@ -473,6 +473,40 @@ class MiningDashboardService:
|
||||
|
||||
return difficulty, network_hashrate, btc_price, block_count
|
||||
|
||||
def get_all_worker_rows(self):
|
||||
"""
|
||||
Iterate through wpage parameter values to collect all worker table rows.
|
||||
|
||||
Returns:
|
||||
list: A list of BeautifulSoup row elements containing worker data.
|
||||
"""
|
||||
all_rows = []
|
||||
page_num = 0
|
||||
while True:
|
||||
url = f"https://ocean.xyz/stats/{self.wallet}?wpage={page_num}#workers-fulltable"
|
||||
logging.info(f"Fetching worker data from: {url}")
|
||||
response = self.session.get(url, timeout=15)
|
||||
if not response.ok:
|
||||
logging.error(f"Error fetching page {page_num}: status code {response.status_code}")
|
||||
break
|
||||
|
||||
soup = BeautifulSoup(response.text, 'html.parser')
|
||||
workers_table = soup.find('tbody', id='workers-tablerows')
|
||||
if not workers_table:
|
||||
logging.debug(f"No workers table found on page {page_num}")
|
||||
break
|
||||
|
||||
rows = workers_table.find_all("tr", class_="table-row")
|
||||
if not rows:
|
||||
logging.debug(f"No worker rows found on page {page_num}, stopping pagination")
|
||||
break
|
||||
|
||||
logging.info(f"Found {len(rows)} worker rows on page {page_num}")
|
||||
all_rows.extend(rows)
|
||||
page_num += 1
|
||||
|
||||
return all_rows
|
||||
|
||||
def get_worker_data(self):
|
||||
"""
|
||||
Get worker data from Ocean.xyz using multiple parsing strategies.
|
||||
@ -775,204 +809,107 @@ class MiningDashboardService:
|
||||
def get_worker_data_alternative(self):
|
||||
"""
|
||||
Alternative implementation to get worker data from Ocean.xyz.
|
||||
Uses a more focused approach to extract worker names and status.
|
||||
|
||||
This version consolidates worker rows from all pages using the wpage parameter.
|
||||
|
||||
Returns:
|
||||
dict: Worker data dictionary with stats and list of workers
|
||||
dict: Worker data dictionary with stats and list of workers.
|
||||
"""
|
||||
base_url = "https://ocean.xyz"
|
||||
stats_url = f"{base_url}/stats/{self.wallet}"
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
||||
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
|
||||
'Accept-Language': 'en-US,en;q=0.9',
|
||||
'Cache-Control': 'no-cache'
|
||||
}
|
||||
|
||||
try:
|
||||
logging.info(f"Fetching worker data from {stats_url} (alternative method)")
|
||||
response = self.session.get(stats_url, headers=headers, timeout=15)
|
||||
if not response.ok:
|
||||
logging.error(f"Error fetching ocean worker data: status code {response.status_code}")
|
||||
logging.info("Fetching worker data across multiple pages (alternative method)")
|
||||
# Get all worker rows from every page
|
||||
rows = self.get_all_worker_rows()
|
||||
if not rows:
|
||||
logging.error("No worker rows found across any pages")
|
||||
return None
|
||||
|
||||
soup = BeautifulSoup(response.text, 'html.parser')
|
||||
|
||||
# Save the HTML to a file for debugging if needed
|
||||
try:
|
||||
with open('debug_ocean_page.html', 'w', encoding='utf-8') as f:
|
||||
f.write(soup.prettify())
|
||||
logging.debug("Saved HTML to debug_ocean_page.html for inspection")
|
||||
except Exception as e:
|
||||
logging.warning(f"Could not save debug HTML: {e}")
|
||||
|
||||
# ---- Specialized Approach ----
|
||||
# Look specifically for the workers table by characteristic selectors
|
||||
workers_table = None
|
||||
|
||||
# First try to find table with workers-tablerows ID
|
||||
workers_table = soup.find('tbody', id='workers-tablerows')
|
||||
|
||||
# If not found, try alternative selectors
|
||||
if not workers_table:
|
||||
# Try to find any table
|
||||
tables = soup.find_all('table')
|
||||
logging.debug(f"Found {len(tables)} tables on page")
|
||||
|
||||
# Look for a table that contains worker information
|
||||
for table in tables:
|
||||
# Look at the header to determine if this is the workers table
|
||||
thead = table.find('thead')
|
||||
if thead:
|
||||
headers = [th.get_text(strip=True).lower() for th in thead.find_all('th')]
|
||||
logging.debug(f"Table headers: {headers}")
|
||||
|
||||
# Check if this looks like a workers table by looking for common headers
|
||||
worker_headers = ['worker', 'name', 'status', 'hashrate', 'share']
|
||||
if any(header in ''.join(headers) for header in worker_headers):
|
||||
logging.info("Found likely workers table by header content")
|
||||
workers_table = table.find('tbody')
|
||||
break
|
||||
|
||||
if not workers_table:
|
||||
logging.error("Could not find workers table")
|
||||
return None
|
||||
|
||||
# Debug: Dump all rows in the workers table
|
||||
rows = workers_table.find_all('tr')
|
||||
logging.info(f"Found {len(rows)} rows in workers table")
|
||||
|
||||
# Debug the first few rows
|
||||
for i, row in enumerate(rows[:3]):
|
||||
if i == 0: # First row special handling - likely contains headers or column info
|
||||
cols = row.find_all(['td', 'th'])
|
||||
col_texts = [col.get_text(strip=True) for col in cols]
|
||||
logging.debug(f"First row columns: {col_texts}")
|
||||
|
||||
# Find workers by looking at each row in the table
|
||||
|
||||
workers = []
|
||||
total_hashrate = 0
|
||||
total_earnings = 0
|
||||
workers_online = 0
|
||||
workers_offline = 0
|
||||
|
||||
# List of invalid worker names (these are likely status labels)
|
||||
invalid_names = ['online', 'offline', 'status', 'worker', 'total']
|
||||
|
||||
# Process each row in the table
|
||||
|
||||
# Process each row from all pages
|
||||
for row_idx, row in enumerate(rows):
|
||||
# Skip rows that look like headers or total
|
||||
cells = row.find_all(['td', 'th'])
|
||||
if not cells or len(cells) < 3:
|
||||
continue
|
||||
|
||||
# Get the first cell text (likely worker name)
|
||||
|
||||
first_cell_text = cells[0].get_text(strip=True)
|
||||
|
||||
# Skip rows with invalid names or total rows
|
||||
if first_cell_text.lower() in invalid_names:
|
||||
continue
|
||||
|
||||
|
||||
try:
|
||||
# Extract hashrate and status from row
|
||||
|
||||
# --- Generate a valid worker name ---
|
||||
worker_name = first_cell_text
|
||||
|
||||
# If name is empty or invalid, generate a fallback name based on row number
|
||||
if not worker_name or worker_name.lower() in invalid_names:
|
||||
worker_name = f"Worker_{row_idx+1}"
|
||||
|
||||
# Debug logging for extracted name
|
||||
logging.debug(f"Extracted worker name: '{worker_name}'")
|
||||
|
||||
# This is likely a worker row - extract data
|
||||
worker_name = first_cell_text or f"Worker_{row_idx+1}"
|
||||
worker = {
|
||||
"name": worker_name,
|
||||
"status": "online", # Default to online since most workers are online
|
||||
"type": "ASIC", # Default type
|
||||
"status": "online", # Default assumption
|
||||
"type": "ASIC",
|
||||
"model": "Unknown",
|
||||
"hashrate_60sec": 0,
|
||||
"hashrate_60sec_unit": "TH/s",
|
||||
"hashrate_3hr": 0,
|
||||
"hashrate_3hr_unit": "TH/s",
|
||||
"efficiency": 90.0, # Default
|
||||
"efficiency": 90.0,
|
||||
"last_share": "N/A",
|
||||
"earnings": 0,
|
||||
"acceptance_rate": 95.0, # Default
|
||||
"acceptance_rate": 95.0,
|
||||
"power_consumption": 0,
|
||||
"temperature": 0
|
||||
}
|
||||
|
||||
# --- Extract status and other data ---
|
||||
# For most tables, column 1 is status, 2 is last share, 3 is 60sec hashrate, 4 is 3hr hashrate, 5 is earnings
|
||||
|
||||
# Get status from second column if available
|
||||
|
||||
# Extract status from second cell if available
|
||||
if len(cells) > 1:
|
||||
status_cell = cells[1]
|
||||
status_text = status_cell.get_text(strip=True).lower()
|
||||
|
||||
# Check if this cell actually contains status information
|
||||
if 'online' in status_text or 'offline' in status_text:
|
||||
worker["status"] = "online" if "online" in status_text else "offline"
|
||||
else:
|
||||
# If the second column doesn't contain status info, check cell contents for clues
|
||||
for cell in cells:
|
||||
cell_text = cell.get_text(strip=True).lower()
|
||||
if 'online' in cell_text:
|
||||
worker["status"] = "online"
|
||||
break
|
||||
elif 'offline' in cell_text:
|
||||
worker["status"] = "offline"
|
||||
break
|
||||
|
||||
# Update counters based on status
|
||||
status_text = cells[1].get_text(strip=True).lower()
|
||||
worker["status"] = "online" if "online" in status_text else "offline"
|
||||
if worker["status"] == "online":
|
||||
workers_online += 1
|
||||
else:
|
||||
workers_offline += 1
|
||||
|
||||
# Parse last share time
|
||||
last_share_idx = 2 # Typical position for last share
|
||||
if len(cells) > last_share_idx:
|
||||
last_share_cell = cells[last_share_idx]
|
||||
worker["last_share"] = last_share_cell.get_text(strip=True)
|
||||
|
||||
# Parse hashrates
|
||||
for i, cell in enumerate(cells):
|
||||
cell_text = cell.get_text(strip=True)
|
||||
|
||||
# Look for hashrate patterns - numbers followed by H/s, TH/s, GH/s, etc.
|
||||
hashrate_match = re.search(r'([\d\.]+)\s*([KMGTPE]?H/s)', cell_text, re.IGNORECASE)
|
||||
if hashrate_match:
|
||||
value = float(hashrate_match.group(1))
|
||||
unit = hashrate_match.group(2)
|
||||
|
||||
# Assign to appropriate hashrate field based on position or content
|
||||
if i == 3 or "60" in cell_text:
|
||||
worker["hashrate_60sec"] = value
|
||||
worker["hashrate_60sec_unit"] = unit
|
||||
elif i == 4 or "3h" in cell_text:
|
||||
worker["hashrate_3hr"] = value
|
||||
worker["hashrate_3hr_unit"] = unit
|
||||
# Add to total hashrate
|
||||
total_hashrate += convert_to_ths(value, unit)
|
||||
|
||||
# Parse earnings from any cell that might contain BTC values
|
||||
|
||||
# Parse last share from third cell if available
|
||||
if len(cells) > 2:
|
||||
worker["last_share"] = cells[2].get_text(strip=True)
|
||||
|
||||
# Parse 60sec hashrate from fourth cell if available
|
||||
if len(cells) > 3:
|
||||
hashrate_60s_text = cells[3].get_text(strip=True)
|
||||
try:
|
||||
parts = hashrate_60s_text.split()
|
||||
if parts:
|
||||
worker["hashrate_60sec"] = float(parts[0])
|
||||
if len(parts) > 1:
|
||||
worker["hashrate_60sec_unit"] = parts[1]
|
||||
except ValueError:
|
||||
logging.warning(f"Could not parse 60-sec hashrate: {hashrate_60s_text}")
|
||||
|
||||
# Parse 3hr hashrate from fifth cell if available
|
||||
if len(cells) > 4:
|
||||
hashrate_3hr_text = cells[4].get_text(strip=True)
|
||||
try:
|
||||
parts = hashrate_3hr_text.split()
|
||||
if parts:
|
||||
worker["hashrate_3hr"] = float(parts[0])
|
||||
if len(parts) > 1:
|
||||
worker["hashrate_3hr_unit"] = parts[1]
|
||||
# Normalize and add to total hashrate (using your convert_to_ths helper)
|
||||
total_hashrate += convert_to_ths(worker["hashrate_3hr"], worker["hashrate_3hr_unit"])
|
||||
except ValueError:
|
||||
logging.warning(f"Could not parse 3hr hashrate: {hashrate_3hr_text}")
|
||||
|
||||
# Look for earnings in any cell containing 'btc'
|
||||
for cell in cells:
|
||||
cell_text = cell.get_text(strip=True)
|
||||
# Look for BTC pattern
|
||||
if "btc" in cell_text.lower():
|
||||
try:
|
||||
# Extract the number part
|
||||
earnings_match = re.search(r'([\d\.]+)', cell_text)
|
||||
if earnings_match:
|
||||
worker["earnings"] = float(earnings_match.group(1))
|
||||
total_earnings += worker["earnings"]
|
||||
except ValueError:
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Set worker type based on name (if it can be inferred)
|
||||
|
||||
# Set worker type based on name
|
||||
lower_name = worker["name"].lower()
|
||||
if 'antminer' in lower_name:
|
||||
worker["type"] = 'ASIC'
|
||||
@ -982,106 +919,33 @@ class MiningDashboardService:
|
||||
worker["model"] = 'MicroBT Whatsminer'
|
||||
elif 'bitaxe' in lower_name or 'nerdqaxe' in lower_name:
|
||||
worker["type"] = 'Bitaxe'
|
||||
worker["model"] = 'Bitaxe Gamma 601'
|
||||
|
||||
# Only add workers with valid data
|
||||
if worker["name"] and worker["name"].lower() not in invalid_names:
|
||||
worker["model"] = 'BitAxe Gamma 601'
|
||||
|
||||
if worker["name"].lower() not in invalid_names:
|
||||
workers.append(worker)
|
||||
logging.debug(f"Added worker: {worker['name']}, status: {worker['status']}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error parsing worker row: {e}")
|
||||
import traceback
|
||||
logging.error(traceback.format_exc())
|
||||
continue
|
||||
|
||||
# If no valid workers were found, try one more approach - generate worker names
|
||||
if not workers and len(rows) > 0:
|
||||
logging.warning("No valid workers found, generating worker names based on row indices")
|
||||
|
||||
for row_idx, row in enumerate(rows):
|
||||
# Skip first row (likely header)
|
||||
if row_idx == 0:
|
||||
continue
|
||||
|
||||
# Skip rows that look like totals
|
||||
cells = row.find_all(['td', 'th'])
|
||||
if not cells or len(cells) < 3:
|
||||
continue
|
||||
|
||||
first_cell_text = cells[0].get_text(strip=True)
|
||||
if first_cell_text.lower() == 'total':
|
||||
continue
|
||||
|
||||
# Generate a worker
|
||||
worker_name = f"Worker_{row_idx}"
|
||||
|
||||
# Basic worker data
|
||||
worker = {
|
||||
"name": worker_name,
|
||||
"status": "online", # Default to online
|
||||
"type": "ASIC", # Default type
|
||||
"model": "Unknown",
|
||||
"hashrate_60sec": 0,
|
||||
"hashrate_60sec_unit": "TH/s",
|
||||
"hashrate_3hr": row_idx * 50, # Generate some reasonable value
|
||||
"hashrate_3hr_unit": "TH/s",
|
||||
"efficiency": 90.0,
|
||||
"last_share": "N/A",
|
||||
"earnings": 0.00001 * row_idx,
|
||||
"acceptance_rate": 95.0,
|
||||
"power_consumption": 0,
|
||||
"temperature": 0
|
||||
}
|
||||
|
||||
workers.append(worker)
|
||||
workers_online += 1
|
||||
|
||||
# Get daily sats from other elements on the page
|
||||
daily_sats = 0
|
||||
try:
|
||||
# Look for earnings per day
|
||||
earnings_elements = soup.find_all('div', text=lambda t: t and 'earnings per day' in t.lower())
|
||||
for element in earnings_elements:
|
||||
# Look for nearest span with a value
|
||||
value_span = element.find_next('span')
|
||||
if value_span:
|
||||
value_text = value_span.get_text(strip=True)
|
||||
try:
|
||||
value_parts = value_text.split()
|
||||
if value_parts:
|
||||
btc_per_day = float(value_parts[0])
|
||||
daily_sats = int(btc_per_day * self.sats_per_btc)
|
||||
break
|
||||
except (ValueError, IndexError):
|
||||
pass
|
||||
except Exception as e:
|
||||
logging.error(f"Error parsing daily sats: {e}")
|
||||
|
||||
# Check if we found any workers
|
||||
|
||||
if not workers:
|
||||
logging.warning("No workers found in the table")
|
||||
logging.error("No valid worker data parsed")
|
||||
return None
|
||||
|
||||
# Return worker stats dictionary
|
||||
|
||||
result = {
|
||||
'workers': workers,
|
||||
'total_hashrate': total_hashrate,
|
||||
'hashrate_unit': 'TH/s', # Always use TH/s for consistent display
|
||||
'hashrate_unit': 'TH/s',
|
||||
'workers_total': len(workers),
|
||||
'workers_online': workers_online,
|
||||
'workers_offline': workers_offline,
|
||||
'total_earnings': total_earnings,
|
||||
'avg_acceptance_rate': 95.0, # Default value
|
||||
'daily_sats': daily_sats,
|
||||
'avg_acceptance_rate': 99.0,
|
||||
'timestamp': datetime.now(ZoneInfo("America/Los_Angeles")).isoformat()
|
||||
}
|
||||
|
||||
logging.info(f"Successfully retrieved {len(workers)} workers using alternative method")
|
||||
logging.info(f"Successfully retrieved {len(workers)} workers across multiple pages")
|
||||
return result
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error in alternative worker data fetch: {e}")
|
||||
import traceback
|
||||
logging.error(traceback.format_exc())
|
||||
return None
|
||||
|
Loading…
Reference in New Issue
Block a user