bitcoin/src/uint256.h
MarcoFalke fade0b5e5e
scripted-diff: Use std::span over Span
-BEGIN VERIFY SCRIPT-

 ren() { sed -i "s!\<$1\>!$2!g" $( git grep -l "$1" -- "./src" ":(exclude)src/span.h" ":(exclude)src/leveldb/db/log_test.cc" ) ; }

 ren Span            std::span
 ren AsBytes         std::as_bytes
 ren AsWritableBytes std::as_writable_bytes

 sed -i 's!SpanPopBack(Span!SpanPopBack(std::span!g' ./src/span.h

-END VERIFY SCRIPT-
2025-03-12 19:45:37 +01:00

214 lines
7.8 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UINT256_H
#define BITCOIN_UINT256_H
#include <crypto/common.h>
#include <span.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <optional>
#include <string>
#include <string_view>
/** Template base class for fixed-sized opaque blobs. */
template<unsigned int BITS>
class base_blob
{
protected:
static constexpr int WIDTH = BITS / 8;
static_assert(BITS % 8 == 0, "base_blob currently only supports whole bytes.");
std::array<uint8_t, WIDTH> m_data;
static_assert(WIDTH == sizeof(m_data), "Sanity check");
public:
/* construct 0 value by default */
constexpr base_blob() : m_data() {}
/* constructor for constants between 1 and 255 */
constexpr explicit base_blob(uint8_t v) : m_data{v} {}
constexpr explicit base_blob(std::span<const unsigned char> vch)
{
assert(vch.size() == WIDTH);
std::copy(vch.begin(), vch.end(), m_data.begin());
}
consteval explicit base_blob(std::string_view hex_str);
constexpr bool IsNull() const
{
return std::all_of(m_data.begin(), m_data.end(), [](uint8_t val) {
return val == 0;
});
}
constexpr void SetNull()
{
std::fill(m_data.begin(), m_data.end(), 0);
}
/** Lexicographic ordering
* @note Does NOT match the ordering on the corresponding \ref
* base_uint::CompareTo, which starts comparing from the end.
*/
constexpr int Compare(const base_blob& other) const { return std::memcmp(m_data.data(), other.m_data.data(), WIDTH); }
friend constexpr bool operator==(const base_blob& a, const base_blob& b) { return a.Compare(b) == 0; }
friend constexpr bool operator!=(const base_blob& a, const base_blob& b) { return a.Compare(b) != 0; }
friend constexpr bool operator<(const base_blob& a, const base_blob& b) { return a.Compare(b) < 0; }
/** @name Hex representation
*
* The hex representation used by GetHex(), ToString(), FromHex() and
* SetHexDeprecated() is unusual, since it shows bytes of the base_blob in
* reverse order. For example, a 4-byte blob {0x12, 0x34, 0x56, 0x78} is
* represented as "78563412" instead of the more typical "12345678"
* representation that would be shown in a hex editor or used by typical
* byte-array / hex conversion functions like python's bytes.hex() and
* bytes.fromhex().
*
* The nice thing about the reverse-byte representation, even though it is
* unusual, is that if a blob contains an arithmetic number in little endian
* format (with least significant bytes first, and most significant bytes
* last), the GetHex() output will match the way the number would normally
* be written in base-16 (with most significant digits first and least
* significant digits last).
*
* This means, for example, that ArithToUint256(num).GetHex() can be used to
* display an arith_uint256 num value as a number, because
* ArithToUint256() converts the number to a blob in little-endian format,
* so the arith_uint256 class doesn't need to have its own number parsing
* and formatting functions.
*
* @{*/
std::string GetHex() const;
/** Unlike FromHex this accepts any invalid input, thus it is fragile and deprecated!
*
* - Hex numbers that don't specify enough bytes to fill the internal array
* will be treated as setting the beginning of it, which corresponds to
* the least significant bytes when converted to base_uint.
*
* - Hex numbers specifying too many bytes will have the numerically most
* significant bytes (the beginning of the string) narrowed away.
*
* - An odd count of hex digits will result in the high bits of the leftmost
* byte being zero.
* "0x123" => {0x23, 0x1, 0x0, ..., 0x0}
*/
void SetHexDeprecated(std::string_view str);
std::string ToString() const;
/**@}*/
constexpr const unsigned char* data() const { return m_data.data(); }
constexpr unsigned char* data() { return m_data.data(); }
constexpr unsigned char* begin() { return m_data.data(); }
constexpr unsigned char* end() { return m_data.data() + WIDTH; }
constexpr const unsigned char* begin() const { return m_data.data(); }
constexpr const unsigned char* end() const { return m_data.data() + WIDTH; }
static constexpr unsigned int size() { return WIDTH; }
constexpr uint64_t GetUint64(int pos) const { return ReadLE64(m_data.data() + pos * 8); }
template<typename Stream>
void Serialize(Stream& s) const
{
s << std::span(m_data);
}
template<typename Stream>
void Unserialize(Stream& s)
{
s.read(MakeWritableByteSpan(m_data));
}
};
template <unsigned int BITS>
consteval base_blob<BITS>::base_blob(std::string_view hex_str)
{
if (hex_str.length() != m_data.size() * 2) throw "Hex string must fit exactly";
auto str_it = hex_str.rbegin();
for (auto& elem : m_data) {
auto lo = util::ConstevalHexDigit(*(str_it++));
elem = (util::ConstevalHexDigit(*(str_it++)) << 4) | lo;
}
}
namespace detail {
/**
* Writes the hex string (in reverse byte order) into a new uintN_t object
* and only returns a value iff all of the checks pass:
* - Input length is uintN_t::size()*2
* - All characters are hex
*/
template <class uintN_t>
std::optional<uintN_t> FromHex(std::string_view str)
{
if (uintN_t::size() * 2 != str.size() || !IsHex(str)) return std::nullopt;
uintN_t rv;
rv.SetHexDeprecated(str);
return rv;
}
/**
* @brief Like FromHex(std::string_view str), but allows an "0x" prefix
* and pads the input with leading zeroes if it is shorter than
* the expected length of uintN_t::size()*2.
*
* Designed to be used when dealing with user input.
*/
template <class uintN_t>
std::optional<uintN_t> FromUserHex(std::string_view input)
{
input = util::RemovePrefixView(input, "0x");
constexpr auto expected_size{uintN_t::size() * 2};
if (input.size() < expected_size) {
auto padded = std::string(expected_size, '0');
std::copy(input.begin(), input.end(), padded.begin() + expected_size - input.size());
return FromHex<uintN_t>(padded);
}
return FromHex<uintN_t>(input);
}
} // namespace detail
/** 160-bit opaque blob.
* @note This type is called uint160 for historical reasons only. It is an opaque
* blob of 160 bits and has no integer operations.
*/
class uint160 : public base_blob<160> {
public:
static std::optional<uint160> FromHex(std::string_view str) { return detail::FromHex<uint160>(str); }
constexpr uint160() = default;
constexpr explicit uint160(std::span<const unsigned char> vch) : base_blob<160>(vch) {}
};
/** 256-bit opaque blob.
* @note This type is called uint256 for historical reasons only. It is an
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
* those are required.
*/
class uint256 : public base_blob<256> {
public:
static std::optional<uint256> FromHex(std::string_view str) { return detail::FromHex<uint256>(str); }
static std::optional<uint256> FromUserHex(std::string_view str) { return detail::FromUserHex<uint256>(str); }
constexpr uint256() = default;
consteval explicit uint256(std::string_view hex_str) : base_blob<256>(hex_str) {}
constexpr explicit uint256(uint8_t v) : base_blob<256>(v) {}
constexpr explicit uint256(std::span<const unsigned char> vch) : base_blob<256>(vch) {}
static const uint256 ZERO;
static const uint256 ONE;
};
#endif // BITCOIN_UINT256_H