mirror of
https://github.com/Retropex/bitcoin.git
synced 2025-05-13 03:30:42 +02:00
289 lines
9.0 KiB
C++
289 lines
9.0 KiB
C++
// Copyright (c) 2016-2022 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
#include <bench/bench.h>
|
|
#include <crypto/muhash.h>
|
|
#include <crypto/ripemd160.h>
|
|
#include <crypto/sha1.h>
|
|
#include <crypto/sha256.h>
|
|
#include <crypto/sha3.h>
|
|
#include <crypto/sha512.h>
|
|
#include <crypto/siphash.h>
|
|
#include <random.h>
|
|
#include <span.h>
|
|
#include <tinyformat.h>
|
|
#include <uint256.h>
|
|
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
/* Number of bytes to hash per iteration */
|
|
static const uint64_t BUFFER_SIZE = 1000*1000;
|
|
|
|
static void BenchRIPEMD160(benchmark::Bench& bench)
|
|
{
|
|
uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
|
|
});
|
|
}
|
|
|
|
static void SHA1(benchmark::Bench& bench)
|
|
{
|
|
uint8_t hash[CSHA1::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA1().Write(in.data(), in.size()).Finalize(hash);
|
|
});
|
|
}
|
|
|
|
static void SHA256_STANDARD(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
|
|
uint8_t hash[CSHA256::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256().Write(in.data(), in.size()).Finalize(hash);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256_SSE4(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
|
|
uint8_t hash[CSHA256::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256().Write(in.data(), in.size()).Finalize(hash);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256_AVX2(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
|
|
uint8_t hash[CSHA256::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256().Write(in.data(), in.size()).Finalize(hash);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256_SHANI(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
|
|
uint8_t hash[CSHA256::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256().Write(in.data(), in.size()).Finalize(hash);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA3_256_1M(benchmark::Bench& bench)
|
|
{
|
|
uint8_t hash[SHA3_256::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
SHA3_256().Write(in).Finalize(hash);
|
|
});
|
|
}
|
|
|
|
static void SHA256_32b_STANDARD(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
|
|
std::vector<uint8_t> in(32,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256()
|
|
.Write(in.data(), in.size())
|
|
.Finalize(in.data());
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256_32b_SSE4(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
|
|
std::vector<uint8_t> in(32,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256()
|
|
.Write(in.data(), in.size())
|
|
.Finalize(in.data());
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256_32b_AVX2(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
|
|
std::vector<uint8_t> in(32,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256()
|
|
.Write(in.data(), in.size())
|
|
.Finalize(in.data());
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256_32b_SHANI(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
|
|
std::vector<uint8_t> in(32,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA256()
|
|
.Write(in.data(), in.size())
|
|
.Finalize(in.data());
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256D64_1024_STANDARD(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
|
|
std::vector<uint8_t> in(64 * 1024, 0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
SHA256D64(in.data(), in.data(), 1024);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256D64_1024_SSE4(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
|
|
std::vector<uint8_t> in(64 * 1024, 0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
SHA256D64(in.data(), in.data(), 1024);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256D64_1024_AVX2(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
|
|
std::vector<uint8_t> in(64 * 1024, 0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
SHA256D64(in.data(), in.data(), 1024);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA256D64_1024_SHANI(benchmark::Bench& bench)
|
|
{
|
|
bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
|
|
std::vector<uint8_t> in(64 * 1024, 0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
SHA256D64(in.data(), in.data(), 1024);
|
|
});
|
|
SHA256AutoDetect();
|
|
}
|
|
|
|
static void SHA512(benchmark::Bench& bench)
|
|
{
|
|
uint8_t hash[CSHA512::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
bench.batch(in.size()).unit("byte").run([&] {
|
|
CSHA512().Write(in.data(), in.size()).Finalize(hash);
|
|
});
|
|
}
|
|
|
|
static void SipHash_32b(benchmark::Bench& bench)
|
|
{
|
|
FastRandomContext rng{/*fDeterministic=*/true};
|
|
auto k0{rng.rand64()}, k1{rng.rand64()};
|
|
auto val{rng.rand256()};
|
|
auto i{0U};
|
|
bench.run([&] {
|
|
ankerl::nanobench::doNotOptimizeAway(SipHashUint256(k0, k1, val));
|
|
++k0;
|
|
++k1;
|
|
++i;
|
|
val.data()[i % uint256::size()] ^= i & 0xFF;
|
|
});
|
|
}
|
|
|
|
static void MuHash(benchmark::Bench& bench)
|
|
{
|
|
MuHash3072 acc;
|
|
unsigned char key[32] = {0};
|
|
uint32_t i = 0;
|
|
bench.run([&] {
|
|
key[0] = ++i & 0xFF;
|
|
acc *= MuHash3072(key);
|
|
});
|
|
}
|
|
|
|
static void MuHashMul(benchmark::Bench& bench)
|
|
{
|
|
MuHash3072 acc;
|
|
FastRandomContext rng(true);
|
|
MuHash3072 muhash{rng.randbytes(32)};
|
|
|
|
bench.run([&] {
|
|
acc *= muhash;
|
|
});
|
|
}
|
|
|
|
static void MuHashDiv(benchmark::Bench& bench)
|
|
{
|
|
MuHash3072 acc;
|
|
FastRandomContext rng(true);
|
|
MuHash3072 muhash{rng.randbytes(32)};
|
|
|
|
bench.run([&] {
|
|
acc /= muhash;
|
|
});
|
|
}
|
|
|
|
static void MuHashPrecompute(benchmark::Bench& bench)
|
|
{
|
|
MuHash3072 acc;
|
|
FastRandomContext rng(true);
|
|
std::vector<unsigned char> key{rng.randbytes(32)};
|
|
|
|
bench.run([&] {
|
|
MuHash3072{key};
|
|
});
|
|
}
|
|
|
|
static void MuHashFinalize(benchmark::Bench& bench)
|
|
{
|
|
FastRandomContext rng(true);
|
|
MuHash3072 acc{rng.randbytes(32)};
|
|
acc /= MuHash3072{rng.rand256()};
|
|
|
|
bench.run([&] {
|
|
uint256 out;
|
|
acc.Finalize(out);
|
|
acc /= MuHash3072{out};
|
|
});
|
|
}
|
|
|
|
BENCHMARK(BenchRIPEMD160, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA1, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256_STANDARD, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256_SSE4, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256_AVX2, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256_SHANI, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA512, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA3_256_1M, benchmark::PriorityLevel::HIGH);
|
|
|
|
BENCHMARK(SHA256_32b_STANDARD, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256_32b_SSE4, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256_32b_AVX2, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256_32b_SHANI, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SipHash_32b, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256D64_1024_STANDARD, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256D64_1024_SSE4, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256D64_1024_AVX2, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(SHA256D64_1024_SHANI, benchmark::PriorityLevel::HIGH);
|
|
|
|
BENCHMARK(MuHash, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(MuHashMul, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(MuHashDiv, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(MuHashPrecompute, benchmark::PriorityLevel::HIGH);
|
|
BENCHMARK(MuHashFinalize, benchmark::PriorityLevel::HIGH);
|