bitcoin/src/test/orphanage_tests.cpp
glozow 8923edfc1f [p2p] allow entries with the same txid in TxOrphanage
Index by wtxid instead of txid to allow entries with the same txid but
different witnesses in orphanage. This prevents an attacker from
blocking a transaction from entering the orphanage by sending a mutated
version of it.
2024-05-14 10:32:28 +01:00

285 lines
11 KiB
C++

// Copyright (c) 2011-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <arith_uint256.h>
#include <primitives/transaction.h>
#include <pubkey.h>
#include <script/sign.h>
#include <script/signingprovider.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <txorphanage.h>
#include <array>
#include <cstdint>
#include <boost/test/unit_test.hpp>
BOOST_FIXTURE_TEST_SUITE(orphanage_tests, TestingSetup)
class TxOrphanageTest : public TxOrphanage
{
public:
inline size_t CountOrphans() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
LOCK(m_mutex);
return m_orphans.size();
}
CTransactionRef RandomOrphan() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
{
LOCK(m_mutex);
std::map<Wtxid, OrphanTx>::iterator it;
it = m_orphans.lower_bound(Wtxid::FromUint256(InsecureRand256()));
if (it == m_orphans.end())
it = m_orphans.begin();
return it->second.tx;
}
};
static void MakeNewKeyWithFastRandomContext(CKey& key, FastRandomContext& rand_ctx = g_insecure_rand_ctx)
{
std::vector<unsigned char> keydata;
keydata = rand_ctx.randbytes(32);
key.Set(keydata.data(), keydata.data() + keydata.size(), /*fCompressedIn=*/true);
assert(key.IsValid());
}
// Creates a transaction with 2 outputs. Spends all outpoints. If outpoints is empty, spends a random one.
static CTransactionRef MakeTransactionSpending(const std::vector<COutPoint>& outpoints, FastRandomContext& det_rand)
{
CKey key;
MakeNewKeyWithFastRandomContext(key, det_rand);
CMutableTransaction tx;
// If no outpoints are given, create a random one.
if (outpoints.empty()) {
tx.vin.emplace_back(Txid::FromUint256(det_rand.rand256()), 0);
} else {
for (const auto& outpoint : outpoints) {
tx.vin.emplace_back(outpoint);
}
}
// Ensure txid != wtxid
tx.vin[0].scriptWitness.stack.push_back({1});
tx.vout.resize(2);
tx.vout[0].nValue = CENT;
tx.vout[0].scriptPubKey = GetScriptForDestination(PKHash(key.GetPubKey()));
tx.vout[1].nValue = 3 * CENT;
tx.vout[1].scriptPubKey = GetScriptForDestination(WitnessV0KeyHash(key.GetPubKey()));
return MakeTransactionRef(tx);
}
static bool EqualTxns(const std::set<CTransactionRef>& set_txns, const std::vector<CTransactionRef>& vec_txns)
{
if (vec_txns.size() != set_txns.size()) return false;
for (const auto& tx : vec_txns) {
if (!set_txns.contains(tx)) return false;
}
return true;
}
static bool EqualTxns(const std::set<CTransactionRef>& set_txns,
const std::vector<std::pair<CTransactionRef, NodeId>>& vec_txns)
{
if (vec_txns.size() != set_txns.size()) return false;
for (const auto& [tx, nodeid] : vec_txns) {
if (!set_txns.contains(tx)) return false;
}
return true;
}
BOOST_AUTO_TEST_CASE(DoS_mapOrphans)
{
// This test had non-deterministic coverage due to
// randomly selected seeds.
// This seed is chosen so that all branches of the function
// ecdsa_signature_parse_der_lax are executed during this test.
// Specifically branches that run only when an ECDSA
// signature's R and S values have leading zeros.
g_insecure_rand_ctx = FastRandomContext{uint256{33}};
TxOrphanageTest orphanage;
CKey key;
MakeNewKeyWithFastRandomContext(key);
FillableSigningProvider keystore;
BOOST_CHECK(keystore.AddKey(key));
// 50 orphan transactions:
for (int i = 0; i < 50; i++)
{
CMutableTransaction tx;
tx.vin.resize(1);
tx.vin[0].prevout.n = 0;
tx.vin[0].prevout.hash = Txid::FromUint256(InsecureRand256());
tx.vin[0].scriptSig << OP_1;
tx.vout.resize(1);
tx.vout[0].nValue = 1*CENT;
tx.vout[0].scriptPubKey = GetScriptForDestination(PKHash(key.GetPubKey()));
orphanage.AddTx(MakeTransactionRef(tx), i);
}
// ... and 50 that depend on other orphans:
for (int i = 0; i < 50; i++)
{
CTransactionRef txPrev = orphanage.RandomOrphan();
CMutableTransaction tx;
tx.vin.resize(1);
tx.vin[0].prevout.n = 0;
tx.vin[0].prevout.hash = txPrev->GetHash();
tx.vout.resize(1);
tx.vout[0].nValue = 1*CENT;
tx.vout[0].scriptPubKey = GetScriptForDestination(PKHash(key.GetPubKey()));
SignatureData empty;
BOOST_CHECK(SignSignature(keystore, *txPrev, tx, 0, SIGHASH_ALL, empty));
orphanage.AddTx(MakeTransactionRef(tx), i);
}
// This really-big orphan should be ignored:
for (int i = 0; i < 10; i++)
{
CTransactionRef txPrev = orphanage.RandomOrphan();
CMutableTransaction tx;
tx.vout.resize(1);
tx.vout[0].nValue = 1*CENT;
tx.vout[0].scriptPubKey = GetScriptForDestination(PKHash(key.GetPubKey()));
tx.vin.resize(2777);
for (unsigned int j = 0; j < tx.vin.size(); j++)
{
tx.vin[j].prevout.n = j;
tx.vin[j].prevout.hash = txPrev->GetHash();
}
SignatureData empty;
BOOST_CHECK(SignSignature(keystore, *txPrev, tx, 0, SIGHASH_ALL, empty));
// Reuse same signature for other inputs
// (they don't have to be valid for this test)
for (unsigned int j = 1; j < tx.vin.size(); j++)
tx.vin[j].scriptSig = tx.vin[0].scriptSig;
BOOST_CHECK(!orphanage.AddTx(MakeTransactionRef(tx), i));
}
// Test EraseOrphansFor:
for (NodeId i = 0; i < 3; i++)
{
size_t sizeBefore = orphanage.CountOrphans();
orphanage.EraseForPeer(i);
BOOST_CHECK(orphanage.CountOrphans() < sizeBefore);
}
// Test LimitOrphanTxSize() function:
FastRandomContext rng{/*fDeterministic=*/true};
orphanage.LimitOrphans(40, rng);
BOOST_CHECK(orphanage.CountOrphans() <= 40);
orphanage.LimitOrphans(10, rng);
BOOST_CHECK(orphanage.CountOrphans() <= 10);
orphanage.LimitOrphans(0, rng);
BOOST_CHECK(orphanage.CountOrphans() == 0);
}
BOOST_AUTO_TEST_CASE(get_children)
{
FastRandomContext det_rand{true};
std::vector<COutPoint> empty_outpoints;
auto parent1 = MakeTransactionSpending(empty_outpoints, det_rand);
auto parent2 = MakeTransactionSpending(empty_outpoints, det_rand);
// Make sure these parents have different txids otherwise this test won't make sense.
while (parent1->GetHash() == parent2->GetHash()) {
parent2 = MakeTransactionSpending(empty_outpoints, det_rand);
}
// Create children to go into orphanage.
auto child_p1n0 = MakeTransactionSpending({{parent1->GetHash(), 0}}, det_rand);
auto child_p2n1 = MakeTransactionSpending({{parent2->GetHash(), 1}}, det_rand);
// Spends the same tx twice. Should not cause duplicates.
auto child_p1n0_p1n1 = MakeTransactionSpending({{parent1->GetHash(), 0}, {parent1->GetHash(), 1}}, det_rand);
// Spends the same outpoint as previous tx. Should still be returned; don't assume outpoints are unique.
auto child_p1n0_p2n0 = MakeTransactionSpending({{parent1->GetHash(), 0}, {parent2->GetHash(), 0}}, det_rand);
const NodeId node1{1};
const NodeId node2{2};
// All orphans provided by node1
{
TxOrphanage orphanage;
BOOST_CHECK(orphanage.AddTx(child_p1n0, node1));
BOOST_CHECK(orphanage.AddTx(child_p2n1, node1));
BOOST_CHECK(orphanage.AddTx(child_p1n0_p1n1, node1));
BOOST_CHECK(orphanage.AddTx(child_p1n0_p2n0, node1));
std::set<CTransactionRef> expected_parent1_children{child_p1n0, child_p1n0_p2n0, child_p1n0_p1n1};
std::set<CTransactionRef> expected_parent2_children{child_p2n1, child_p1n0_p2n0};
BOOST_CHECK(EqualTxns(expected_parent1_children, orphanage.GetChildrenFromSamePeer(parent1, node1)));
BOOST_CHECK(EqualTxns(expected_parent2_children, orphanage.GetChildrenFromSamePeer(parent2, node1)));
BOOST_CHECK(EqualTxns(expected_parent1_children, orphanage.GetChildrenFromDifferentPeer(parent1, node2)));
BOOST_CHECK(EqualTxns(expected_parent2_children, orphanage.GetChildrenFromDifferentPeer(parent2, node2)));
// The peer must match
BOOST_CHECK(orphanage.GetChildrenFromSamePeer(parent1, node2).empty());
BOOST_CHECK(orphanage.GetChildrenFromSamePeer(parent2, node2).empty());
// There shouldn't be any children of this tx in the orphanage
BOOST_CHECK(orphanage.GetChildrenFromSamePeer(child_p1n0_p2n0, node1).empty());
BOOST_CHECK(orphanage.GetChildrenFromSamePeer(child_p1n0_p2n0, node2).empty());
BOOST_CHECK(orphanage.GetChildrenFromDifferentPeer(child_p1n0_p2n0, node1).empty());
BOOST_CHECK(orphanage.GetChildrenFromDifferentPeer(child_p1n0_p2n0, node2).empty());
}
// Orphans provided by node1 and node2
{
TxOrphanage orphanage;
BOOST_CHECK(orphanage.AddTx(child_p1n0, node1));
BOOST_CHECK(orphanage.AddTx(child_p2n1, node1));
BOOST_CHECK(orphanage.AddTx(child_p1n0_p1n1, node2));
BOOST_CHECK(orphanage.AddTx(child_p1n0_p2n0, node2));
// +----------------+---------------+----------------------------------+
// | | sender=node1 | sender=node2 |
// +----------------+---------------+----------------------------------+
// | spends parent1 | child_p1n0 | child_p1n0_p1n1, child_p1n0_p2n0 |
// | spends parent2 | child_p2n1 | child_p1n0_p2n0 |
// +----------------+---------------+----------------------------------+
// Children of parent1 from node1:
{
std::set<CTransactionRef> expected_parent1_node1{child_p1n0};
BOOST_CHECK(EqualTxns(expected_parent1_node1, orphanage.GetChildrenFromSamePeer(parent1, node1)));
BOOST_CHECK(EqualTxns(expected_parent1_node1, orphanage.GetChildrenFromDifferentPeer(parent1, node2)));
}
// Children of parent2 from node1:
{
std::set<CTransactionRef> expected_parent2_node1{child_p2n1};
BOOST_CHECK(EqualTxns(expected_parent2_node1, orphanage.GetChildrenFromSamePeer(parent2, node1)));
BOOST_CHECK(EqualTxns(expected_parent2_node1, orphanage.GetChildrenFromDifferentPeer(parent2, node2)));
}
// Children of parent1 from node2:
{
std::set<CTransactionRef> expected_parent1_node2{child_p1n0_p1n1, child_p1n0_p2n0};
BOOST_CHECK(EqualTxns(expected_parent1_node2, orphanage.GetChildrenFromSamePeer(parent1, node2)));
BOOST_CHECK(EqualTxns(expected_parent1_node2, orphanage.GetChildrenFromDifferentPeer(parent1, node1)));
}
// Children of parent2 from node2:
{
std::set<CTransactionRef> expected_parent2_node2{child_p1n0_p2n0};
BOOST_CHECK(EqualTxns(expected_parent2_node2, orphanage.GetChildrenFromSamePeer(parent2, node2)));
BOOST_CHECK(EqualTxns(expected_parent2_node2, orphanage.GetChildrenFromDifferentPeer(parent2, node1)));
}
}
}
BOOST_AUTO_TEST_SUITE_END()