bitcoin/src/codex32.cpp
Andrew Poelstra c85de09d88 codex32: provide user-readable error types
Github-Pull: #27351
Rebased-From: 1fa04b11b2452a2f15906d97cf1370d43f0dc23e
2024-11-13 20:51:48 +00:00

425 lines
16 KiB
C++

// Copyright (c) 2017, 2021 Pieter Wuille
// Copyright (c) 2021-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bech32.h>
#include <codex32.h>
#include <util/vector.h>
#include <array>
#include <assert.h>
#include <numeric>
#include <optional>
namespace codex32
{
namespace
{
typedef bech32::internal::data data;
// Build multiplication and logarithm tables for GF(32).
//
// We represent GF(32) as an extension of GF(2) by appending a root, alpha, of the
// polynomial x^5 + x^3 + 1. All elements of GF(32) can be represented as degree-4
// polynomials in alpha. So e.g. 1 is represented by 1, alpha by 2, alpha^2 by 4,
// and so on.
//
// alpha is also a generator of the multiplicative group of the field. So every nonzero
// element in GF(32) can be represented as alpha^i, for some i in {0, 1, ..., 31}.
// This representation makes multiplication and division very easy, since it is just
// addition and subtraction in the exponent.
//
// These tables allow converting from the normal binary representation of GF(32) elements
// to the power-of-alpha one.
constexpr std::pair<std::array<int8_t, 31>, std::array<int8_t, 32>> GenerateGF32Tables() {
// We use these tables to perform arithmetic in GF(32) below, when constructing the
// tables for GF(1024).
std::array<int8_t, 31> GF32_EXP{};
std::array<int8_t, 32> GF32_LOG{};
// fmod encodes the defining polynomial of GF(32) over GF(2), x^5 + x^3 + 1.
// Because coefficients in GF(2) are binary digits, the coefficients are packed as 101001.
const int fmod = 41;
// Elements of GF(32) are encoded as vectors of length 5 over GF(2), that is,
// 5 binary digits. Each element (b_4, b_3, b_2, b_1, b_0) encodes a polynomial
// b_4*x^4 + b_3*x^3 + b_2*x^2 + b_1*x^1 + b_0 (modulo fmod).
// For example, 00001 = 1 is the multiplicative identity.
GF32_EXP[0] = 1;
GF32_LOG[0] = -1;
GF32_LOG[1] = 0;
int v = 1;
for (int i = 1; i < 31; ++i) {
// Multiplication by x is the same as shifting left by 1, as
// every coefficient of the polynomial is moved up one place.
v = v << 1;
// If the polynomial now has an x^5 term, we subtract fmod from it
// to remain working modulo fmod. Subtraction is the same as XOR in characteristic
// 2 fields.
if (v & 32) v ^= fmod;
GF32_EXP[i] = v;
GF32_LOG[v] = i;
}
return std::make_pair(GF32_EXP, GF32_LOG);
}
constexpr auto tables32 = GenerateGF32Tables();
constexpr const std::array<int8_t, 31>& GF32_EXP = tables32.first;
constexpr const std::array<int8_t, 32>& GF32_LOG = tables32.second;
uint8_t gf32_mul(uint8_t x, uint8_t y) {
if (x == 0 || y == 0) {
return 0;
}
return GF32_EXP[(GF32_LOG[x] + GF32_LOG[y]) % 31];
}
uint8_t gf32_div(uint8_t x, uint8_t y) {
assert(y != 0);
if (x == 0) {
return 0;
}
return GF32_EXP[(GF32_LOG[x] + 31 - GF32_LOG[y]) % 31];
}
// The bech32 string "secretshare32"
constexpr const std::array<uint8_t, 13> CODEX32_M = {
16, 25, 24, 3, 25, 11, 16, 23, 29, 3, 25, 17, 10
};
// The bech32 string "secretshare32ex"
constexpr const std::array<uint8_t, 15> CODEX32_LONG_M = {
16, 25, 24, 3, 25, 11, 16, 23, 29, 3, 25, 17, 10, 25, 6,
};
// The generator for the codex32 checksum, not including the leading x^13 term
constexpr const std::array<uint8_t, 13> CODEX32_GEN = {
25, 27, 17, 8, 0, 25, 25, 25, 31, 27, 24, 16, 16,
};
// The generator for the long codex32 checksum, not including the leading x^15 term
constexpr const std::array<uint8_t, 15> CODEX32_LONG_GEN = {
15, 10, 25, 26, 9, 25, 21, 6, 23, 21, 6, 5, 22, 4, 23,
};
/** This function will compute what 5-bit values to XOR into the last <checksum length>
* input values, in order to make the checksum 0. These values are returned in an array
* whose length is implied by the type of the generator polynomial (`CODEX32_GEN` or
* `CODEX32_LONG_GEN`) that is passed in. The result should be xored with the target
* residue ("secretshare32" or "secretshare32ex". */
template <typename Residue>
Residue PolyMod(const data& v, const Residue& gen)
{
// The input is interpreted as a list of coefficients of a polynomial over F = GF(32),
// in the same way as in bech32. The block comment in bech32::<anonymous>::PolyMod
// provides more details.
//
// Unlike bech32, the output consists of 13 5-bit values, rather than 6, so they cannot
// be packed into a uint32_t, or even a uint64_t.
//
// Like bech32 we have a generator polynomial which defines the BCH code. For "short"
// strings, whose data part is 93 characters or less, we use
// g(x) = x^13 + {25}x^12 + {27}x^11 + {17}x^10 + {8}x^9 + {0}x^8 + {25}x^7
// + {25}x^6 + {25}x^5 + {31}x^4 + {27}x^3 + {24}x^2 + {16}x + {16}
//
// For long strings, whose data part is more than 93 characters, we use
// g(x) = x^15 + {15}x^14 + {10}x^13 + {25}x^12 + {26}x^11 + {9}x^10
// + {25}x^9 + {21}x^8 + {6}x^7 + {23}x^6 + {21}x^5 + {6}x^4
// + {5}x^3 + {22}x^2 + {4}x^1 + {23}
//
// In both cases g is chosen in such a way that the resulting code is a BCH code which
// can detect up to 8 errors in a window of 93 characters. Unlike bech32, no further
// optimization was done to achieve more detection capability than the design parameters.
//
// For information about the {n} encoding of GF32 elements, see the block comment in
// bech32::<anonymous>::PolyMod.
Residue res{};
res[gen.size() - 1] = 1;
for (const auto v_i : v) {
// We want to update `res` to correspond to a polynomial with one extra term. That is,
// we first multiply it by x and add the next character, which is done by left-shifting
// the entire array and adding the next character to the open slot.
//
// We then reduce it module g, which involves taking the shifted-off character, multiplying
// it by g, and adding it to the result of the previous step. This makes sense because after
// multiplying by x, `res` has the same degree as g, so reduction by g simply requires
// dividing the most significant coefficient of `res` by the most significant coefficient of
// g (which is 1), then subtracting that multiple of g.
//
// Recall that we are working in a characteristic-2 field, so that subtraction is the same
// thing as addition.
// Multiply by x
uint8_t shift = res[0];
for (size_t i = 1; i < res.size(); ++i) {
res[i - 1] = res[i];
}
// Add the next value
res[res.size() - 1] = v_i;
// Reduce
if (shift != 0) {
for(size_t i = 0; i < res.size(); ++i) {
if (gen[i] != 0) {
res[i] ^= gf32_mul(gen[i], shift);
}
}
}
}
return res;
}
/** Verify a checksum. */
template <typename Residue>
bool VerifyChecksum(const std::string& hrp, const data& values, const Residue& gen, const Residue& target)
{
auto enc = bech32::internal::PreparePolynomialCoefficients(hrp, values);
auto res = PolyMod(enc, gen);
for (size_t i = 0; i < res.size(); ++i) {
if (res[i] != target[i]) {
return 0;
}
}
return 1;
}
/** Create a checksum. */
template <typename Residue>
data CreateChecksum(const std::string& hrp, const data& values, const Residue& gen, const Residue& target)
{
data enc = bech32::internal::PreparePolynomialCoefficients(hrp, values);
enc.resize(enc.size() + gen.size());
const auto checksum = PolyMod(enc, gen);
data ret(gen.size());
for (size_t i = 0; i < checksum.size(); ++i) {
ret[i] = checksum[i] ^ target[i];
}
return ret;
}
// Given a set of share indices and a target index `idx`, which must be in the set,
// compute the Lagrange basis polynomial for `idx` evaluated at the point `eval`.
//
// All inputs are GF32 elements, rather than array indices or anything else.
uint8_t lagrange_coefficient(std::vector<uint8_t>& indices, uint8_t idx, uint8_t eval) {
uint8_t num = 1;
uint8_t den = 1;
for (const auto idx_i : indices) {
if (idx_i != idx) {
num = gf32_mul(num, idx_i ^ eval);
den = gf32_mul(den, idx_i ^ idx);
}
}
// return num / den
return gf32_div(num, den);
}
} // namespace
std::string ErrorString(Error e) {
switch (e) {
case OK: return "ok";
case BAD_CHECKSUM: return "bad checksum";
case BECH32_DECODE: return "bech32 decode failure (invalid character, no HRP, or inconsistent case)";
case INVALID_HRP: return "hrp differed from 'ms'";
case INVALID_ID_LEN: return "seed ID was not 4 characters";
case INVALID_ID_CHAR: return "seed ID used a non-bech32 character";
case INVALID_LENGTH: return "invalid length";
case INVALID_K: return "invalid threshold (k) value";
case INVALID_SHARE_IDX: return "invalid share index";
case TOO_FEW_SHARES: return "tried to derive a share but did not have enough input shares";
case DUPLICATE_SHARE: return "tried to derive a share but two input shares had the same index";
case MISMATCH_K: return "tried to derive a share but input shares had inconsistent threshold (k) values";
case MISMATCH_ID: return "tried to derive a share but input shares had inconsistent seed IDs";
case MISMATCH_LENGTH: return "tried to derive a share but input shares had inconsistent lengths";
}
assert(0);
}
/** Encode a codex32 string. */
std::string Result::Encode() const {
assert(IsValid());
const data checksum = m_data.size() <= 80
? CreateChecksum(m_hrp, m_data, CODEX32_GEN, CODEX32_M)
: CreateChecksum(m_hrp, m_data, CODEX32_LONG_GEN, CODEX32_LONG_M);
return bech32::internal::Encode(m_hrp, m_data, checksum);
}
/** Decode a codex32 string */
Result::Result(const std::string& str) {
m_valid = OK;
auto res = bech32::internal::Decode(str, bech32::CharLimit::CODEX32, bech32::CHECKSUM_SIZE);
if (str.size() > bech32::CharLimit::CODEX32) {
m_valid = INVALID_LENGTH;
// Early return since if we failed the max size check, Decode did not give us any data.
return;
} else if (res.first.empty() && res.second.empty()) {
m_valid = BECH32_DECODE;
return;
} else if (res.first != "ms") {
m_valid = INVALID_HRP;
// Early return since if the HRP is wrong, all bets are off and no point continuing
return;
}
m_hrp = std::move(res.first);
if (res.second.size() >= 45 && res.second.size() <= 90) {
// If, after converting back to base-256, we have 5 or more bits of data
// remaining, it means that we had an entire character of useless data,
// which shouldn't have been included.
if (((res.second.size() - 6 - 13) * 5) % 8 > 4) {
m_valid = INVALID_LENGTH;
} else if (VerifyChecksum(m_hrp, res.second, CODEX32_GEN, CODEX32_M)) {
m_data = data(res.second.begin(), res.second.end() - 13);
} else {
m_valid = BAD_CHECKSUM;
}
} else if (res.second.size() >= 96 && res.second.size() <= 124) {
if (((res.second.size() - 6 - 15) * 5) % 8 > 4) {
m_valid = INVALID_LENGTH;
} else if (VerifyChecksum(m_hrp, res.second, CODEX32_LONG_GEN, CODEX32_LONG_M)) {
m_data = data(res.second.begin(), res.second.end() - 15);
} else {
m_valid = BAD_CHECKSUM;
}
} else {
m_valid = INVALID_LENGTH;
}
if (m_valid == OK) {
auto k = bech32::internal::CHARSET[res.second[0]];
if (k < '0' || k == '1' || k > '9') {
m_valid = INVALID_K;
}
if (k == '0' && m_data[5] != 16) {
// If the threshold is 0, the only allowable share is S
m_valid = INVALID_SHARE_IDX;
}
}
}
Result::Result(std::string&& hrp, size_t k, const std::string& id, char share_idx, const std::vector<unsigned char>& data) {
m_valid = OK;
if (hrp != "ms") {
m_valid = INVALID_HRP;
}
m_hrp = hrp;
if (k == 1 || k > 9) {
m_valid = INVALID_K;
}
if (id.size() != 4) {
m_valid = INVALID_ID_LEN;
}
int8_t sidx = bech32::internal::CHARSET_REV[(unsigned char) share_idx];
if (sidx == -1) {
m_valid = INVALID_SHARE_IDX;
}
if (k == 0 && sidx != 16) {
// If the threshold is 0, the only allowable share is S
m_valid = INVALID_SHARE_IDX;
}
for (size_t i = 0; i < id.size(); ++i) {
if (bech32::internal::CHARSET_REV[(unsigned char) id[i]] == -1) {
m_valid = INVALID_ID_CHAR;
}
}
if (m_valid != OK) {
// early bail before allocating memory
return;
}
m_data.reserve(6 + ((data.size() * 8) + 4) / 5);
m_data.push_back(bech32::internal::CHARSET_REV['0' + k]);
m_data.push_back(bech32::internal::CHARSET_REV[(unsigned char) id[0]]);
m_data.push_back(bech32::internal::CHARSET_REV[(unsigned char) id[1]]);
m_data.push_back(bech32::internal::CHARSET_REV[(unsigned char) id[2]]);
m_data.push_back(bech32::internal::CHARSET_REV[(unsigned char) id[3]]);
m_data.push_back(sidx);
ConvertBits<8, 5, true>([&](unsigned char c) { m_data.push_back(c); }, data.begin(), data.end());
}
Result::Result(const std::vector<Result>& shares, char output_idx) {
m_valid = OK;
int8_t oidx = bech32::internal::CHARSET_REV[(unsigned char) output_idx];
if (oidx == -1) {
m_valid = INVALID_SHARE_IDX;
}
if (shares.empty()) {
m_valid = TOO_FEW_SHARES;
return;
}
size_t k = shares[0].GetK();
if (k > shares.size()) {
m_valid = TOO_FEW_SHARES;
}
if (m_valid != OK) {
return;
}
std::vector<uint8_t> indices;
indices.reserve(shares.size());
for (size_t i = 0; i < shares.size(); ++i) {
// Currently the only supported hrp is "ms" so it is impossible to violate this
assert (shares[0].m_hrp == shares[i].m_hrp);
if (shares[0].m_data[0] != shares[i].m_data[0]) {
m_valid = MISMATCH_K;
}
for (size_t j = 1; j < 5; ++j) {
if (shares[0].m_data[j] != shares[i].m_data[j]) {
m_valid = MISMATCH_ID;
}
}
if (shares[i].m_data.size() != shares[0].m_data.size()) {
m_valid = MISMATCH_LENGTH;
}
indices.push_back(shares[i].m_data[5]);
for (size_t j = i + 1; j < shares.size(); ++j) {
if (shares[i].m_data[5] == shares[j].m_data[5]) {
m_valid = DUPLICATE_SHARE;
}
}
}
m_hrp = shares[0].m_hrp;
m_data.reserve(shares[0].m_data.size());
for (size_t j = 0; j < shares[0].m_data.size(); ++j) {
m_data.push_back(0);
}
for (size_t i = 0; i < shares.size(); ++i) {
uint8_t lagrange_coeff = lagrange_coefficient(indices, shares[i].m_data[5], oidx);
for (size_t j = 0; j < m_data.size(); ++j) {
m_data[j] ^= gf32_mul(lagrange_coeff, shares[i].m_data[j]);
}
}
}
std::string Result::GetIdString() const {
assert(IsValid());
std::string ret;
ret.reserve(4);
ret.push_back(bech32::internal::CHARSET[m_data[1]]);
ret.push_back(bech32::internal::CHARSET[m_data[2]]);
ret.push_back(bech32::internal::CHARSET[m_data[3]]);
ret.push_back(bech32::internal::CHARSET[m_data[4]]);
return ret;
}
size_t Result::GetK() const {
assert(IsValid());
return bech32::internal::CHARSET[m_data[0]] - '0';
}
} // namespace codex32