bitcoin/src/group.h
Ava Chow 2d46a89386 Squashed 'src/secp256k1/' changes from 2f2ccc46954..0cdc758a563
0cdc758a563 Merge bitcoin-core/secp256k1#1631: release: prepare for 0.6.0
39d5dfd542a release: prepare for 0.6.0
df2eceb2790 build: add ellswift.md and musig.md to release tarball
a306bb7e903 tools: fix check-abi.sh after cmake out locations were changed
145868a84d2 Do not export `secp256k1_musig_nonce_gen_internal`
b161bffb8bf Merge bitcoin-core/secp256k1#1579: Clear sensitive memory without getting optimized out (revival of #636)
a38d879a1a6 Merge bitcoin-core/secp256k1#1628: Name public API structs
7d48f5ed02e Merge bitcoin-core/secp256k1#1581: test, ci: Lower default iteration count to 16
694342fdb71 Name public API structs
0f73caf7c62 test, ci: Lower default iteration count to 16
9a8db52f4e9 Merge bitcoin-core/secp256k1#1582: cmake, test: Add `secp256k1_` prefix to test names
765ef53335a Clear _gej instances after point multiplication to avoid potential leaks
349e6ab916b Introduce separate _clear functions for hash module
99cc9fd6d01 Don't rely on memset to set signed integers to 0
97c57f42ba8 Implement various _clear() functions with secp256k1_memclear()
9bb368d1466 Use secp256k1_memclear() to clear stack memory instead of memset()
e3497bbf001 Separate between clearing memory and setting to zero in tests
d79a6ccd43a Separate secp256k1_fe_set_int( . , 0 ) from secp256k1_fe_clear()
1c081262227 Add secp256k1_memclear() for clearing secret data
1464f15c812 Merge bitcoin-core/secp256k1#1625: util: Remove unused (u)int64_t formatting macros
980c08df80a util: Remove unused (u)int64_t formatting macros
9b7c59cbb90 Merge bitcoin-core/secp256k1#1624: ci: Update macOS image
096e3e23f63 ci: Update macOS image
e7d384488e8 Don't clear secrets in pippenger implementation
68b55209f1b Merge bitcoin-core/secp256k1#1619: musig: ctimetests: fix _declassify range for generated nonce points
f0868a9b3d8 Merge bitcoin-core/secp256k1#1595: build: 45839th attempt to fix symbol visibility on Windows
1fae76f50c0 Merge bitcoin-core/secp256k1#1620: Remove unused scratch space from API
8be3839fb2e Remove unused scratch space from API
57eda3ba300 musig: ctimetests: fix _declassify range for generated nonce points
87384f5c0f2 cmake, test: Add `secp256k1_` prefix to test names
e59158b6eb7 Merge bitcoin-core/secp256k1#1553: cmake: Set top-level target output locations
18f9b967c25 Merge bitcoin-core/secp256k1#1616: examples: do not retry generating seckey randomness in musig
5bab8f6d3c4 examples: make key generation doc consistent
e8908221a45 examples: do not retry generating seckey randomness in musig
70b6be1834e extrakeys: improve doc of keypair_create (don't suggest retry)
01b5893389e Merge bitcoin-core/secp256k1#1599: #1570 improve examples: remove key generation loop
cd4f84f3ba8 Improve examples/documentation: remove key generation loops
a88aa935063 Merge bitcoin-core/secp256k1#1603: f can never equal -m
3660fe5e2a9 Merge bitcoin-core/secp256k1#1479: Add module "musig" that implements MuSig2 multi-signatures (BIP 327)
168c92011f5 build: allow enabling the musig module in cmake
f411841a46b Add module "musig" that implements MuSig2 multi-signatures (BIP 327)
0be79660f38 util: add constant-time is_zero_array function
c8fbdb1b972 group: add ge_to_bytes_ext and ge_from_bytes_ext
ef7ff03407f f can never equal -m
c232486d84e Revert "cmake: Set `ENVIRONMENT` property for examples on Windows"
26e4a7c2146 cmake: Set top-level target output locations
4c57c7a5a95 Merge bitcoin-core/secp256k1#1554: cmake: Clean up testing code
447334cb06d include: Avoid visibility("default") on Windows
472faaa8ee6 Merge bitcoin-core/secp256k1#1604: doc: fix typos in `secp256k1_ecdsa_{recoverable_,}signature` API description
292310fbb24 doc: fix typos in `secp256k1_ecdsa_{recoverable_,}signature` API description
85e224dd97f group: add ge_to_bytes and ge_from_bytes
7c987ec89e6 cmake: Call `enable_testing()` unconditionally
6aa576515ef cmake: Delete `CTest` module

git-subtree-dir: src/secp256k1
git-subtree-split: 0cdc758a56360bf58a851fe91085a327ec97685a
2024-11-04 14:59:46 -05:00

213 lines
11 KiB
C

/***********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_GROUP_H
#define SECP256K1_GROUP_H
#include "field.h"
/** A group element in affine coordinates on the secp256k1 curve,
* or occasionally on an isomorphic curve of the form y^2 = x^3 + 7*t^6.
* Note: For exhaustive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x;
secp256k1_fe y;
int infinity; /* whether this represents the point at infinity */
} secp256k1_ge;
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates.
* Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
secp256k1_fe y; /* actual Y: y/z^3 */
secp256k1_fe z;
int infinity; /* whether this represents the point at infinity */
} secp256k1_gej;
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct {
secp256k1_fe_storage x;
secp256k1_fe_storage y;
} secp256k1_ge_storage;
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Maximum allowed magnitudes for group element coordinates
* in affine (x, y) and jacobian (x, y, z) representation. */
#define SECP256K1_GE_X_MAGNITUDE_MAX 4
#define SECP256K1_GE_Y_MAGNITUDE_MAX 3
#define SECP256K1_GEJ_X_MAGNITUDE_MAX 4
#define SECP256K1_GEJ_Y_MAGNITUDE_MAX 4
#define SECP256K1_GEJ_Z_MAGNITUDE_MAX 1
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
/** Determine whether x is a valid X coordinate on the curve. */
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
/** Determine whether fraction xn/xd is a valid X coordinate on the curve (xd != 0). */
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
/** Set a group element equal to another which is given in jacobian coordinates. Constant time. */
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a group element equal to another which is given in jacobian coordinates. */
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
/** Bring a batch of inputs to the same global z "denominator", based on ratios between
* (omitted) z coordinates of adjacent elements.
*
* Although the elements a[i] are _ge rather than _gej, they actually represent elements
* in Jacobian coordinates with their z coordinates omitted.
*
* Using the notation z(b) to represent the omitted z coordinate of b, the array zr of
* z coordinate ratios must satisfy zr[i] == z(a[i]) / z(a[i-1]) for 0 < 'i' < len.
* The zr[0] value is unused.
*
* This function adjusts the coordinates of 'a' in place so that for all 'i', z(a[i]) == z(a[len-1]).
* In other words, the initial value of z(a[len-1]) becomes the global z "denominator". Only the
* a[i].x and a[i].y coordinates are explicitly modified; the adjustment of the omitted z coordinate is
* implicit.
*
* The coordinates of the final element a[len-1] are not changed.
*/
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr);
/** Check two group elements (affine) for equality in variable time. */
static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b);
/** Set a group element (affine) equal to the point at infinity. */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
/** Check two group elements (jacobian) for equality in variable time. */
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b);
/** Check two group elements (jacobian and affine) for equality in variable time. */
static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b);
/** Compare the X coordinate of a group element (jacobian).
* The magnitude of the group element's X coordinate must not exceed 31. */
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Set r equal to the double of a. Constant time. */
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
static void secp256k1_gej_clear(secp256k1_gej *r);
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
static void secp256k1_ge_clear(secp256k1_ge *r);
/** Convert a group element to the storage type. */
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
/** Convert a group element back from the storage type. */
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
/** Convert a group element that is not infinity to a 64-byte array. The output
* array is platform-dependent. */
static void secp256k1_ge_to_bytes(unsigned char *buf, const secp256k1_ge *a);
/** Convert a 64-byte array into group element. This function assumes that the
* provided buffer correctly encodes a group element. */
static void secp256k1_ge_from_bytes(secp256k1_ge *r, const unsigned char *buf);
/** Convert a group element (that is allowed to be infinity) to a 64-byte
* array. The output array is platform-dependent. */
static void secp256k1_ge_to_bytes_ext(unsigned char *data, const secp256k1_ge *ge);
/** Convert a 64-byte array into a group element. This function assumes that the
* provided buffer is the output of secp256k1_ge_to_bytes_ext. */
static void secp256k1_ge_from_bytes_ext(secp256k1_ge *ge, const unsigned char *data);
/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
*
* In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the
* group, and this function returns always true.
*
* When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a
* (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this
* function checks whether a point that is on the curve is in fact also in that subgroup.
*/
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
/** Check invariants on an affine group element (no-op unless VERIFY is enabled). */
static void secp256k1_ge_verify(const secp256k1_ge *a);
#define SECP256K1_GE_VERIFY(a) secp256k1_ge_verify(a)
/** Check invariants on a Jacobian group element (no-op unless VERIFY is enabled). */
static void secp256k1_gej_verify(const secp256k1_gej *a);
#define SECP256K1_GEJ_VERIFY(a) secp256k1_gej_verify(a)
#endif /* SECP256K1_GROUP_H */