bitcoin/src/policy/coin_age_priority.cpp
2023-10-17 02:30:25 +00:00

254 lines
9.1 KiB
C++

// Copyright (c) 2012-2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <policy/coin_age_priority.h>
#include <coins.h>
#include <consensus/validation.h>
#include <node/miner.h>
#include <policy/policy.h>
#include <primitives/transaction.h>
#include <txmempool.h>
#include <util/system.h>
#include <validation.h>
using node::BlockAssembler;
unsigned int CalculateModifiedSize(const CTransaction& tx, unsigned int nTxSize)
{
// In order to avoid disincentivizing cleaning up the UTXO set we don't count
// the constant overhead for each txin and up to 110 bytes of scriptSig (which
// is enough to cover a compressed pubkey p2sh redemption) for priority.
// Providing any more cleanup incentive than making additional inputs free would
// risk encouraging people to create junk outputs to redeem later.
if (nTxSize == 0)
nTxSize = (GetTransactionWeight(tx) + WITNESS_SCALE_FACTOR - 1) / WITNESS_SCALE_FACTOR;
for (std::vector<CTxIn>::const_iterator it(tx.vin.begin()); it != tx.vin.end(); ++it)
{
unsigned int offset = 41U + std::min(110U, (unsigned int)it->scriptSig.size());
if (nTxSize > offset)
nTxSize -= offset;
}
return nTxSize;
}
double ComputePriority(const CTransaction& tx, double dPriorityInputs, unsigned int nTxSize)
{
nTxSize = CalculateModifiedSize(tx, nTxSize);
if (nTxSize == 0) return 0.0;
return dPriorityInputs / nTxSize;
}
double GetPriority(const CTransaction &tx, const CCoinsViewCache& view, int nHeight, CAmount &inChainInputValue)
{
inChainInputValue = 0;
if (tx.IsCoinBase())
return 0.0;
double dResult = 0.0;
for (const CTxIn& txin : tx.vin)
{
const Coin& coin = view.AccessCoin(txin.prevout);
if (coin.IsSpent()) {
continue;
}
if (coin.nHeight <= nHeight) {
dResult += (double)(coin.out.nValue) * (nHeight - coin.nHeight);
inChainInputValue += coin.out.nValue;
}
}
return ComputePriority(tx, dResult);
}
void CTxMemPoolEntry::UpdateCachedPriority(unsigned int currentHeight, CAmount valueInCurrentBlock)
{
int heightDiff = int(currentHeight) - int(cachedHeight);
double deltaPriority = ((double)heightDiff*inChainInputValue)/nModSize;
cachedPriority += deltaPriority;
cachedHeight = currentHeight;
inChainInputValue += valueInCurrentBlock;
assert(MoneyRange(inChainInputValue));
}
struct update_priority
{
update_priority(unsigned int _height, CAmount _value) :
height(_height), value(_value)
{}
void operator() (CTxMemPoolEntry &e)
{ e.UpdateCachedPriority(height, value); }
private:
unsigned int height;
CAmount value;
};
void CTxMemPool::UpdateDependentPriorities(const CTransaction &tx, unsigned int nBlockHeight, bool addToChain)
{
LOCK(cs);
for (unsigned int i = 0; i < tx.vout.size(); i++) {
auto it = mapNextTx.find(COutPoint(tx.GetHash(), i));
if (it == mapNextTx.end())
continue;
uint256 hash = it->second->GetHash();
txiter iter = mapTx.find(hash);
mapTx.modify(iter, update_priority(nBlockHeight, addToChain ? tx.vout[i].nValue : -tx.vout[i].nValue));
}
}
double
CTxMemPoolEntry::GetPriority(unsigned int currentHeight) const
{
// This will only return accurate results when currentHeight >= the heights
// at which all the in-chain inputs of the tx were included in blocks.
// Typical usage of GetPriority with chainActive.Height() will ensure this.
int heightDiff = currentHeight - cachedHeight;
double deltaPriority = ((double)heightDiff*inChainInputValue)/nModSize;
double dResult = cachedPriority + deltaPriority;
if (dResult < 0) // This should only happen if it was called with an invalid height
dResult = 0;
return dResult;
}
// We want to sort transactions by coin age priority
typedef std::pair<double, CTxMemPool::txiter> TxCoinAgePriority;
struct TxCoinAgePriorityCompare
{
bool operator()(const TxCoinAgePriority& a, const TxCoinAgePriority& b)
{
if (a.first == b.first)
return CompareTxMemPoolEntryByScore()(*(b.second), *(a.second)); //Reverse order to make sort less than
return a.first < b.first;
}
};
bool BlockAssembler::isStillDependent(const CTxMemPool& mempool, CTxMemPool::txiter iter)
{
assert(iter != mempool.mapTx.end());
for (const auto& parent : iter->GetMemPoolParentsConst()) {
auto parent_it = mempool.mapTx.iterator_to(parent);
if (!inBlock.count(parent_it)) {
return true;
}
}
return false;
}
bool BlockAssembler::TestForBlock(CTxMemPool::txiter iter)
{
uint64_t packageSize = iter->GetSizeWithAncestors();
int64_t packageSigOps = iter->GetSigOpCostWithAncestors();
if (!TestPackage(packageSize, packageSigOps)) {
// If the block is so close to full that no more txs will fit
// or if we've tried more than 50 times to fill remaining space
// then flag that the block is finished
if (nBlockWeight > m_options.nBlockMaxWeight - 400 || nBlockSigOpsCost > MAX_BLOCK_SIGOPS_COST - 8 || lastFewTxs > 50) {
blockFinished = true;
return false;
}
// Once we're within 4000 weight of a full block, only look at 50 more txs
// to try to fill the remaining space.
if (nBlockWeight > m_options.nBlockMaxWeight - 4000) {
++lastFewTxs;
}
return false;
}
CTxMemPool::setEntries package;
package.insert(iter);
if (!TestPackageTransactions(package)) {
if (nBlockSize > m_options.nBlockMaxSize - 100 || lastFewTxs > 50) {
blockFinished = true;
return false;
}
if (nBlockSize > m_options.nBlockMaxSize - 1000) {
++lastFewTxs;
}
return false;
}
return true;
}
void BlockAssembler::addPriorityTxs(const CTxMemPool& mempool, int &nPackagesSelected)
{
AssertLockHeld(mempool.cs);
// How much of the block should be dedicated to high-priority transactions,
// included regardless of the fees they pay
uint64_t nBlockPrioritySize = gArgs.GetIntArg("-blockprioritysize", DEFAULT_BLOCK_PRIORITY_SIZE);
nBlockPrioritySize = std::min(m_options.nBlockMaxSize, nBlockPrioritySize);
if (nBlockPrioritySize == 0) {
return;
}
bool fSizeAccounting = fNeedSizeAccounting;
fNeedSizeAccounting = true;
// This vector will be sorted into a priority queue:
std::vector<TxCoinAgePriority> vecPriority;
TxCoinAgePriorityCompare pricomparer;
std::map<CTxMemPool::txiter, double, CompareIteratorByHash> waitPriMap;
typedef std::map<CTxMemPool::txiter, double, CompareIteratorByHash>::iterator waitPriIter;
double actualPriority = -1;
vecPriority.reserve(mempool.mapTx.size());
for (auto mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi) {
double dPriority = mi->GetPriority(nHeight);
vecPriority.push_back(TxCoinAgePriority(dPriority, mi));
}
std::make_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
CTxMemPool::txiter iter;
while (!vecPriority.empty() && !blockFinished) { // add a tx from priority queue to fill the blockprioritysize
iter = vecPriority.front().second;
actualPriority = vecPriority.front().first;
std::pop_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
vecPriority.pop_back();
// If tx already in block, skip
if (inBlock.count(iter)) {
assert(false); // shouldn't happen for priority txs
continue;
}
// If tx is dependent on other mempool txs which haven't yet been included
// then put it in the waitSet
if (isStillDependent(mempool, iter)) {
waitPriMap.insert(std::make_pair(iter, actualPriority));
continue;
}
// If this tx fits in the block add it, otherwise keep looping
if (TestForBlock(iter)) {
AddToBlock(iter);
++nPackagesSelected;
// If now that this txs is added we've surpassed our desired priority size
// or have dropped below the minimum priority threshold, then we're done adding priority txs
if (nBlockSize >= nBlockPrioritySize || actualPriority <= MINIMUM_TX_PRIORITY) {
break;
}
// This tx was successfully added, so
// add transactions that depend on this one to the priority queue to try again
for (const auto& child : iter->GetMemPoolChildrenConst())
{
auto child_it = mempool.mapTx.iterator_to(child);
waitPriIter wpiter = waitPriMap.find(child_it);
if (wpiter != waitPriMap.end()) {
vecPriority.push_back(TxCoinAgePriority(wpiter->second, child_it));
std::push_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
waitPriMap.erase(wpiter);
}
}
}
}
fNeedSizeAccounting = fSizeAccounting;
}