bitcoin/test/functional/wallet_accounts.py
Russell Yanofsky 045eeb8870 Rename account to label where appropriate
This change only updates strings and adds RPC aliases, but should simplify the
implementation of address labels in
https://github.com/bitcoin/bitcoin/pull/7729, by getting renaming out of the
way and letting it focus on semantics.

The difference between accounts and labels is that labels apply only to
addresses, while accounts apply to both addresses and transactions
(transactions have "from" and "to" accounts). The code associating accounts
with transactions is clumsy and unreliable so we would like get rid of it.
2018-03-19 12:05:35 -04:00

207 lines
8.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2016-2017 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test label RPCs.
RPCs tested are:
- getlabeladdress
- getaddressesbyaccount
- listaddressgroupings
- setlabel
- sendfrom (with account arguments)
- move (with account arguments)
"""
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import assert_equal
class WalletLabelsTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 1
self.extra_args = [[]]
def run_test(self):
node = self.nodes[0]
# Check that there's no UTXO on any of the nodes
assert_equal(len(node.listunspent()), 0)
# Note each time we call generate, all generated coins go into
# the same address, so we call twice to get two addresses w/50 each
node.generate(1)
node.generate(101)
assert_equal(node.getbalance(), 100)
# there should be 2 address groups
# each with 1 address with a balance of 50 Bitcoins
address_groups = node.listaddressgroupings()
assert_equal(len(address_groups), 2)
# the addresses aren't linked now, but will be after we send to the
# common address
linked_addresses = set()
for address_group in address_groups:
assert_equal(len(address_group), 1)
assert_equal(len(address_group[0]), 2)
assert_equal(address_group[0][1], 50)
linked_addresses.add(address_group[0][0])
# send 50 from each address to a third address not in this wallet
# There's some fee that will come back to us when the miner reward
# matures.
common_address = "msf4WtN1YQKXvNtvdFYt9JBnUD2FB41kjr"
txid = node.sendmany(
fromaccount="",
amounts={common_address: 100},
subtractfeefrom=[common_address],
minconf=1,
)
tx_details = node.gettransaction(txid)
fee = -tx_details['details'][0]['fee']
# there should be 1 address group, with the previously
# unlinked addresses now linked (they both have 0 balance)
address_groups = node.listaddressgroupings()
assert_equal(len(address_groups), 1)
assert_equal(len(address_groups[0]), 2)
assert_equal(set([a[0] for a in address_groups[0]]), linked_addresses)
assert_equal([a[1] for a in address_groups[0]], [0, 0])
node.generate(1)
# we want to reset so that the "" label has what's expected.
# otherwise we're off by exactly the fee amount as that's mined
# and matures in the next 100 blocks
node.sendfrom("", common_address, fee)
amount_to_send = 1.0
# Create labels and make sure subsequent label API calls
# recognize the label/address associations.
labels = [Label(name) for name in ("a", "b", "c", "d", "e")]
for label in labels:
label.add_receive_address(node.getlabeladdress(label.name))
label.verify(node)
# Send a transaction to each label, and make sure this forces
# getlabeladdress to generate a new receiving address.
for label in labels:
node.sendtoaddress(label.receive_address, amount_to_send)
label.add_receive_address(node.getlabeladdress(label.name))
label.verify(node)
# Check the amounts received.
node.generate(1)
for label in labels:
assert_equal(
node.getreceivedbyaddress(label.addresses[0]), amount_to_send)
assert_equal(node.getreceivedbylabel(label.name), amount_to_send)
# Check that sendfrom label reduces listaccounts balances.
for i, label in enumerate(labels):
to_label = labels[(i+1) % len(labels)]
node.sendfrom(label.name, to_label.receive_address, amount_to_send)
node.generate(1)
for label in labels:
label.add_receive_address(node.getlabeladdress(label.name))
label.verify(node)
assert_equal(node.getreceivedbylabel(label.name), 2)
node.move(label.name, "", node.getbalance(label.name))
label.verify(node)
node.generate(101)
expected_account_balances = {"": 5200}
for label in labels:
expected_account_balances[label.name] = 0
assert_equal(node.listaccounts(), expected_account_balances)
assert_equal(node.getbalance(""), 5200)
# Check that setlabel can assign a label to a new unused address.
for label in labels:
address = node.getlabeladdress("")
node.setlabel(address, label.name)
label.add_address(address)
label.verify(node)
assert(address not in node.getaddressesbyaccount(""))
# Check that addmultisigaddress can assign labels.
for label in labels:
addresses = []
for x in range(10):
addresses.append(node.getnewaddress())
multisig_address = node.addmultisigaddress(5, addresses, label.name)['address']
label.add_address(multisig_address)
label.verify(node)
node.sendfrom("", multisig_address, 50)
node.generate(101)
for label in labels:
assert_equal(node.getbalance(label.name), 50)
# Check that setlabel can change the label of an address from a
# different label.
change_label(node, labels[0].addresses[0], labels[0], labels[1])
# Check that setlabel can change the label of an address which
# is the receiving address of a different label.
change_label(node, labels[0].receive_address, labels[0], labels[1])
# Check that setlabel can set the label of an address already
# in the label. This is a no-op.
change_label(node, labels[2].addresses[0], labels[2], labels[2])
# Check that setlabel can set the label of an address which is
# already the receiving address of the label. It would probably make
# sense for this to be a no-op, but right now it resets the receiving
# address, causing getlabeladdress to return a brand new address.
change_label(node, labels[2].receive_address, labels[2], labels[2])
class Label:
def __init__(self, name):
# Label name
self.name = name
# Current receiving address associated with this label.
self.receive_address = None
# List of all addresses assigned with this label
self.addresses = []
def add_address(self, address):
assert_equal(address not in self.addresses, True)
self.addresses.append(address)
def add_receive_address(self, address):
self.add_address(address)
self.receive_address = address
def verify(self, node):
if self.receive_address is not None:
assert self.receive_address in self.addresses
assert_equal(node.getlabeladdress(self.name), self.receive_address)
for address in self.addresses:
assert_equal(node.getaccount(address), self.name)
assert_equal(
set(node.getaddressesbyaccount(self.name)), set(self.addresses))
def change_label(node, address, old_label, new_label):
assert_equal(address in old_label.addresses, True)
node.setlabel(address, new_label.name)
old_label.addresses.remove(address)
new_label.add_address(address)
# Calling setlabel on an address which was previously the receiving
# address of a different label should reset the receiving address of
# the old label, causing getlabeladdress to return a brand new
# address.
if address == old_label.receive_address:
new_address = node.getlabeladdress(old_label.name)
assert_equal(new_address not in old_label.addresses, True)
assert_equal(new_address not in new_label.addresses, True)
old_label.add_receive_address(new_address)
old_label.verify(node)
new_label.verify(node)
if __name__ == '__main__':
WalletLabelsTest().main()