# Copyright (c) 2019-2020 Pieter Wuille
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only secp256k1 elliptic curve implementation

WARNING: This code is slow, uses bad randomness, does not properly protect
keys, and is trivially vulnerable to side channel attacks. Do not use for
anything but tests."""
import csv
import hashlib
import os
import random
import sys
import unittest

from .util import modinv

def TaggedHash(tag, data):
    ss = hashlib.sha256(tag.encode('utf-8')).digest()
    ss += ss
    ss += data
    return hashlib.sha256(ss).digest()

def xor_bytes(b0, b1):
    return bytes(x ^ y for (x, y) in zip(b0, b1))

def jacobi_symbol(n, k):
    """Compute the Jacobi symbol of n modulo k

    See http://en.wikipedia.org/wiki/Jacobi_symbol

    For our application k is always prime, so this is the same as the Legendre symbol."""
    assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k"
    n %= k
    t = 0
    while n != 0:
        while n & 1 == 0:
            n >>= 1
            r = k & 7
            t ^= (r == 3 or r == 5)
        n, k = k, n
        t ^= (n & k & 3 == 3)
        n = n % k
    if k == 1:
        return -1 if t else 1
    return 0

def modsqrt(a, p):
    """Compute the square root of a modulo p when p % 4 = 3.

    The Tonelli-Shanks algorithm can be used. See https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm

    Limiting this function to only work for p % 4 = 3 means we don't need to
    iterate through the loop. The highest n such that p - 1 = 2^n Q with Q odd
    is n = 1. Therefore Q = (p-1)/2 and sqrt = a^((Q+1)/2) = a^((p+1)/4)

    secp256k1's is defined over field of size 2**256 - 2**32 - 977, which is 3 mod 4.
    """
    if p % 4 != 3:
        raise NotImplementedError("modsqrt only implemented for p % 4 = 3")
    sqrt = pow(a, (p + 1)//4, p)
    if pow(sqrt, 2, p) == a % p:
        return sqrt
    return None

class EllipticCurve:
    def __init__(self, p, a, b):
        """Initialize elliptic curve y^2 = x^3 + a*x + b over GF(p)."""
        self.p = p
        self.a = a % p
        self.b = b % p

    def affine(self, p1):
        """Convert a Jacobian point tuple p1 to affine form, or None if at infinity.

        An affine point is represented as the Jacobian (x, y, 1)"""
        x1, y1, z1 = p1
        if z1 == 0:
            return None
        inv = modinv(z1, self.p)
        inv_2 = (inv**2) % self.p
        inv_3 = (inv_2 * inv) % self.p
        return ((inv_2 * x1) % self.p, (inv_3 * y1) % self.p, 1)

    def has_even_y(self, p1):
        """Whether the point p1 has an even Y coordinate when expressed in affine coordinates."""
        return not (p1[2] == 0 or self.affine(p1)[1] & 1)

    def negate(self, p1):
        """Negate a Jacobian point tuple p1."""
        x1, y1, z1 = p1
        return (x1, (self.p - y1) % self.p, z1)

    def on_curve(self, p1):
        """Determine whether a Jacobian tuple p is on the curve (and not infinity)"""
        x1, y1, z1 = p1
        z2 = pow(z1, 2, self.p)
        z4 = pow(z2, 2, self.p)
        return z1 != 0 and (pow(x1, 3, self.p) + self.a * x1 * z4 + self.b * z2 * z4 - pow(y1, 2, self.p)) % self.p == 0

    def is_x_coord(self, x):
        """Test whether x is a valid X coordinate on the curve."""
        x_3 = pow(x, 3, self.p)
        return jacobi_symbol(x_3 + self.a * x + self.b, self.p) != -1

    def lift_x(self, x):
        """Given an X coordinate on the curve, return a corresponding affine point for which the Y coordinate is even."""
        x_3 = pow(x, 3, self.p)
        v = x_3 + self.a * x + self.b
        y = modsqrt(v, self.p)
        if y is None:
            return None
        return (x, self.p - y if y & 1 else y, 1)

    def double(self, p1):
        """Double a Jacobian tuple p1

        See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Doubling"""
        x1, y1, z1 = p1
        if z1 == 0:
            return (0, 1, 0)
        y1_2 = (y1**2) % self.p
        y1_4 = (y1_2**2) % self.p
        x1_2 = (x1**2) % self.p
        s = (4*x1*y1_2) % self.p
        m = 3*x1_2
        if self.a:
            m += self.a * pow(z1, 4, self.p)
        m = m % self.p
        x2 = (m**2 - 2*s) % self.p
        y2 = (m*(s - x2) - 8*y1_4) % self.p
        z2 = (2*y1*z1) % self.p
        return (x2, y2, z2)

    def add_mixed(self, p1, p2):
        """Add a Jacobian tuple p1 and an affine tuple p2

        See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition (with affine point)"""
        x1, y1, z1 = p1
        x2, y2, z2 = p2
        assert(z2 == 1)
        # Adding to the point at infinity is a no-op
        if z1 == 0:
            return p2
        z1_2 = (z1**2) % self.p
        z1_3 = (z1_2 * z1) % self.p
        u2 = (x2 * z1_2) % self.p
        s2 = (y2 * z1_3) % self.p
        if x1 == u2:
            if (y1 != s2):
                # p1 and p2 are inverses. Return the point at infinity.
                return (0, 1, 0)
            # p1 == p2. The formulas below fail when the two points are equal.
            return self.double(p1)
        h = u2 - x1
        r = s2 - y1
        h_2 = (h**2) % self.p
        h_3 = (h_2 * h) % self.p
        u1_h_2 = (x1 * h_2) % self.p
        x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
        y3 = (r*(u1_h_2 - x3) - y1*h_3) % self.p
        z3 = (h*z1) % self.p
        return (x3, y3, z3)

    def add(self, p1, p2):
        """Add two Jacobian tuples p1 and p2

        See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition"""
        x1, y1, z1 = p1
        x2, y2, z2 = p2
        # Adding the point at infinity is a no-op
        if z1 == 0:
            return p2
        if z2 == 0:
            return p1
        # Adding an Affine to a Jacobian is more efficient since we save field multiplications and squarings when z = 1
        if z1 == 1:
            return self.add_mixed(p2, p1)
        if z2 == 1:
            return self.add_mixed(p1, p2)
        z1_2 = (z1**2) % self.p
        z1_3 = (z1_2 * z1) % self.p
        z2_2 = (z2**2) % self.p
        z2_3 = (z2_2 * z2) % self.p
        u1 = (x1 * z2_2) % self.p
        u2 = (x2 * z1_2) % self.p
        s1 = (y1 * z2_3) % self.p
        s2 = (y2 * z1_3) % self.p
        if u1 == u2:
            if (s1 != s2):
                # p1 and p2 are inverses. Return the point at infinity.
                return (0, 1, 0)
            # p1 == p2. The formulas below fail when the two points are equal.
            return self.double(p1)
        h = u2 - u1
        r = s2 - s1
        h_2 = (h**2) % self.p
        h_3 = (h_2 * h) % self.p
        u1_h_2 = (u1 * h_2) % self.p
        x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
        y3 = (r*(u1_h_2 - x3) - s1*h_3) % self.p
        z3 = (h*z1*z2) % self.p
        return (x3, y3, z3)

    def mul(self, ps):
        """Compute a (multi) point multiplication

        ps is a list of (Jacobian tuple, scalar) pairs.
        """
        r = (0, 1, 0)
        for i in range(255, -1, -1):
            r = self.double(r)
            for (p, n) in ps:
                if ((n >> i) & 1):
                    r = self.add(r, p)
        return r

SECP256K1_FIELD_SIZE = 2**256 - 2**32 - 977
SECP256K1 = EllipticCurve(SECP256K1_FIELD_SIZE, 0, 7)
SECP256K1_G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8, 1)
SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2

class ECPubKey():
    """A secp256k1 public key"""

    def __init__(self):
        """Construct an uninitialized public key"""
        self.valid = False

    def set(self, data):
        """Construct a public key from a serialization in compressed or uncompressed format"""
        if (len(data) == 65 and data[0] == 0x04):
            p = (int.from_bytes(data[1:33], 'big'), int.from_bytes(data[33:65], 'big'), 1)
            self.valid = SECP256K1.on_curve(p)
            if self.valid:
                self.p = p
                self.compressed = False
        elif (len(data) == 33 and (data[0] == 0x02 or data[0] == 0x03)):
            x = int.from_bytes(data[1:33], 'big')
            if SECP256K1.is_x_coord(x):
                p = SECP256K1.lift_x(x)
                # Make the Y coordinate odd if required (lift_x always produces
                # a point with an even Y coordinate).
                if data[0] & 1:
                    p = SECP256K1.negate(p)
                self.p = p
                self.valid = True
                self.compressed = True
            else:
                self.valid = False
        else:
            self.valid = False

    @property
    def is_compressed(self):
        return self.compressed

    @property
    def is_valid(self):
        return self.valid

    def get_bytes(self):
        assert(self.valid)
        p = SECP256K1.affine(self.p)
        if p is None:
            return None
        if self.compressed:
            return bytes([0x02 + (p[1] & 1)]) + p[0].to_bytes(32, 'big')
        else:
            return bytes([0x04]) + p[0].to_bytes(32, 'big') + p[1].to_bytes(32, 'big')

    def verify_ecdsa(self, sig, msg, low_s=True):
        """Verify a strictly DER-encoded ECDSA signature against this pubkey.

        See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
        ECDSA verifier algorithm"""
        assert(self.valid)

        # Extract r and s from the DER formatted signature. Return false for
        # any DER encoding errors.
        if (sig[1] + 2 != len(sig)):
            return False
        if (len(sig) < 4):
            return False
        if (sig[0] != 0x30):
            return False
        if (sig[2] != 0x02):
            return False
        rlen = sig[3]
        if (len(sig) < 6 + rlen):
            return False
        if rlen < 1 or rlen > 33:
            return False
        if sig[4] >= 0x80:
            return False
        if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)):
            return False
        r = int.from_bytes(sig[4:4+rlen], 'big')
        if (sig[4+rlen] != 0x02):
            return False
        slen = sig[5+rlen]
        if slen < 1 or slen > 33:
            return False
        if (len(sig) != 6 + rlen + slen):
            return False
        if sig[6+rlen] >= 0x80:
            return False
        if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)):
            return False
        s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big')

        # Verify that r and s are within the group order
        if r < 1 or s < 1 or r >= SECP256K1_ORDER or s >= SECP256K1_ORDER:
            return False
        if low_s and s >= SECP256K1_ORDER_HALF:
            return False
        z = int.from_bytes(msg, 'big')

        # Run verifier algorithm on r, s
        w = modinv(s, SECP256K1_ORDER)
        u1 = z*w % SECP256K1_ORDER
        u2 = r*w % SECP256K1_ORDER
        R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, u1), (self.p, u2)]))
        if R is None or R[0] != r:
            return False
        return True

def generate_privkey():
    """Generate a valid random 32-byte private key."""
    return random.randrange(1, SECP256K1_ORDER).to_bytes(32, 'big')

class ECKey():
    """A secp256k1 private key"""

    def __init__(self):
        self.valid = False

    def set(self, secret, compressed):
        """Construct a private key object with given 32-byte secret and compressed flag."""
        assert(len(secret) == 32)
        secret = int.from_bytes(secret, 'big')
        self.valid = (secret > 0 and secret < SECP256K1_ORDER)
        if self.valid:
            self.secret = secret
            self.compressed = compressed

    def generate(self, compressed=True):
        """Generate a random private key (compressed or uncompressed)."""
        self.set(generate_privkey(), compressed)

    def get_bytes(self):
        """Retrieve the 32-byte representation of this key."""
        assert(self.valid)
        return self.secret.to_bytes(32, 'big')

    @property
    def is_valid(self):
        return self.valid

    @property
    def is_compressed(self):
        return self.compressed

    def get_pubkey(self):
        """Compute an ECPubKey object for this secret key."""
        assert(self.valid)
        ret = ECPubKey()
        p = SECP256K1.mul([(SECP256K1_G, self.secret)])
        ret.p = p
        ret.valid = True
        ret.compressed = self.compressed
        return ret

    def sign_ecdsa(self, msg, low_s=True):
        """Construct a DER-encoded ECDSA signature with this key.

        See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
        ECDSA signer algorithm."""
        assert(self.valid)
        z = int.from_bytes(msg, 'big')
        # Note: no RFC6979, but a simple random nonce (some tests rely on distinct transactions for the same operation)
        k = random.randrange(1, SECP256K1_ORDER)
        R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, k)]))
        r = R[0] % SECP256K1_ORDER
        s = (modinv(k, SECP256K1_ORDER) * (z + self.secret * r)) % SECP256K1_ORDER
        if low_s and s > SECP256K1_ORDER_HALF:
            s = SECP256K1_ORDER - s
        # Represent in DER format. The byte representations of r and s have
        # length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33
        # bytes).
        rb = r.to_bytes((r.bit_length() + 8) // 8, 'big')
        sb = s.to_bytes((s.bit_length() + 8) // 8, 'big')
        return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb

def compute_xonly_pubkey(key):
    """Compute an x-only (32 byte) public key from a (32 byte) private key.

    This also returns whether the resulting public key was negated.
    """

    assert len(key) == 32
    x = int.from_bytes(key, 'big')
    if x == 0 or x >= SECP256K1_ORDER:
        return (None, None)
    P = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, x)]))
    return (P[0].to_bytes(32, 'big'), not SECP256K1.has_even_y(P))

def tweak_add_privkey(key, tweak):
    """Tweak a private key (after negating it if needed)."""

    assert len(key) == 32
    assert len(tweak) == 32

    x = int.from_bytes(key, 'big')
    if x == 0 or x >= SECP256K1_ORDER:
        return None
    if not SECP256K1.has_even_y(SECP256K1.mul([(SECP256K1_G, x)])):
       x = SECP256K1_ORDER - x
    t = int.from_bytes(tweak, 'big')
    if t >= SECP256K1_ORDER:
        return None
    x = (x + t) % SECP256K1_ORDER
    if x == 0:
        return None
    return x.to_bytes(32, 'big')

def tweak_add_pubkey(key, tweak):
    """Tweak a public key and return whether the result had to be negated."""

    assert len(key) == 32
    assert len(tweak) == 32

    x_coord = int.from_bytes(key, 'big')
    if x_coord >= SECP256K1_FIELD_SIZE:
        return None
    P = SECP256K1.lift_x(x_coord)
    if P is None:
        return None
    t = int.from_bytes(tweak, 'big')
    if t >= SECP256K1_ORDER:
        return None
    Q = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, t), (P, 1)]))
    if Q is None:
        return None
    return (Q[0].to_bytes(32, 'big'), not SECP256K1.has_even_y(Q))

def verify_schnorr(key, sig, msg):
    """Verify a Schnorr signature (see BIP 340).

    - key is a 32-byte xonly pubkey (computed using compute_xonly_pubkey).
    - sig is a 64-byte Schnorr signature
    - msg is a 32-byte message
    """
    assert len(key) == 32
    assert len(msg) == 32
    assert len(sig) == 64

    x_coord = int.from_bytes(key, 'big')
    if x_coord == 0 or x_coord >= SECP256K1_FIELD_SIZE:
        return False
    P = SECP256K1.lift_x(x_coord)
    if P is None:
        return False
    r = int.from_bytes(sig[0:32], 'big')
    if r >= SECP256K1_FIELD_SIZE:
        return False
    s = int.from_bytes(sig[32:64], 'big')
    if s >= SECP256K1_ORDER:
        return False
    e = int.from_bytes(TaggedHash("BIP0340/challenge", sig[0:32] + key + msg), 'big') % SECP256K1_ORDER
    R = SECP256K1.mul([(SECP256K1_G, s), (P, SECP256K1_ORDER - e)])
    if not SECP256K1.has_even_y(R):
        return False
    if ((r * R[2] * R[2]) % SECP256K1_FIELD_SIZE) != R[0]:
        return False
    return True

def sign_schnorr(key, msg, aux=None, flip_p=False, flip_r=False):
    """Create a Schnorr signature (see BIP 340)."""

    if aux is None:
        aux = bytes(32)

    assert len(key) == 32
    assert len(msg) == 32
    assert len(aux) == 32

    sec = int.from_bytes(key, 'big')
    if sec == 0 or sec >= SECP256K1_ORDER:
        return None
    P = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, sec)]))
    if SECP256K1.has_even_y(P) == flip_p:
        sec = SECP256K1_ORDER - sec
    t = (sec ^ int.from_bytes(TaggedHash("BIP0340/aux", aux), 'big')).to_bytes(32, 'big')
    kp = int.from_bytes(TaggedHash("BIP0340/nonce", t + P[0].to_bytes(32, 'big') + msg), 'big') % SECP256K1_ORDER
    assert kp != 0
    R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, kp)]))
    k = kp if SECP256K1.has_even_y(R) != flip_r else SECP256K1_ORDER - kp
    e = int.from_bytes(TaggedHash("BIP0340/challenge", R[0].to_bytes(32, 'big') + P[0].to_bytes(32, 'big') + msg), 'big') % SECP256K1_ORDER
    return R[0].to_bytes(32, 'big') + ((k + e * sec) % SECP256K1_ORDER).to_bytes(32, 'big')

class TestFrameworkKey(unittest.TestCase):
    def test_schnorr(self):
        """Test the Python Schnorr implementation."""
        byte_arrays = [generate_privkey() for _ in range(3)] + [v.to_bytes(32, 'big') for v in [0, SECP256K1_ORDER - 1, SECP256K1_ORDER, 2**256 - 1]]
        keys = {}
        for privkey in byte_arrays:  # build array of key/pubkey pairs
            pubkey, _ = compute_xonly_pubkey(privkey)
            if pubkey is not None:
                keys[privkey] = pubkey
        for msg in byte_arrays:  # test every combination of message, signing key, verification key
            for sign_privkey, sign_pubkey in keys.items():
                sig = sign_schnorr(sign_privkey, msg)
                for verify_privkey, verify_pubkey in keys.items():
                    if verify_privkey == sign_privkey:
                        self.assertTrue(verify_schnorr(verify_pubkey, sig, msg))
                        sig = list(sig)
                        sig[random.randrange(64)] ^= (1 << (random.randrange(8)))  # damaging signature should break things
                        sig = bytes(sig)
                    self.assertFalse(verify_schnorr(verify_pubkey, sig, msg))

    def test_schnorr_testvectors(self):
        """Implement the BIP340 test vectors (read from bip340_test_vectors.csv)."""
        num_tests = 0
        with open(os.path.join(sys.path[0], 'test_framework', 'bip340_test_vectors.csv'), newline='', encoding='utf8') as csvfile:
            reader = csv.reader(csvfile)
            next(reader)
            for row in reader:
                (i_str, seckey_hex, pubkey_hex, aux_rand_hex, msg_hex, sig_hex, result_str, comment) = row
                i = int(i_str)
                pubkey = bytes.fromhex(pubkey_hex)
                msg = bytes.fromhex(msg_hex)
                sig = bytes.fromhex(sig_hex)
                result = result_str == 'TRUE'
                if seckey_hex != '':
                    seckey = bytes.fromhex(seckey_hex)
                    pubkey_actual = compute_xonly_pubkey(seckey)[0]
                    self.assertEqual(pubkey.hex(), pubkey_actual.hex(), "BIP340 test vector %i (%s): pubkey mismatch" % (i, comment))
                    aux_rand = bytes.fromhex(aux_rand_hex)
                    try:
                        sig_actual = sign_schnorr(seckey, msg, aux_rand)
                        self.assertEqual(sig.hex(), sig_actual.hex(), "BIP340 test vector %i (%s): sig mismatch" % (i, comment))
                    except RuntimeError as e:
                        self.fail("BIP340 test vector %i (%s): signing raised exception %s" % (i, comment, e))
                result_actual = verify_schnorr(pubkey, sig, msg)
                if result:
                    self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification failed" % (i, comment))
                else:
                    self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification succeeded unexpectedly" % (i, comment))
                num_tests += 1
        self.assertTrue(num_tests >= 15) # expect at least 15 test vectors