/************************************************************************* * Written in 2024 by Sebastian Falbesoner * * To the extent possible under law, the author(s) have dedicated all * * copyright and related and neighboring rights to the software in this * * file to the public domain worldwide. This software is distributed * * without any warranty. For the CC0 Public Domain Dedication, see * * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * *************************************************************************/ /** This file demonstrates how to use the ElligatorSwift module to perform * a key exchange according to BIP 324. Additionally, see the documentation * in include/secp256k1_ellswift.h and doc/ellswift.md. */ #include #include #include #include #include #include "examples_util.h" int main(void) { secp256k1_context* ctx; unsigned char randomize[32]; unsigned char auxrand1[32]; unsigned char auxrand2[32]; unsigned char seckey1[32]; unsigned char seckey2[32]; unsigned char ellswift_pubkey1[64]; unsigned char ellswift_pubkey2[64]; unsigned char shared_secret1[32]; unsigned char shared_secret2[32]; int return_val; /* Create a secp256k1 context */ ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); if (!fill_random(randomize, sizeof(randomize))) { printf("Failed to generate randomness\n"); return 1; } /* Randomizing the context is recommended to protect against side-channel * leakage. See `secp256k1_context_randomize` in secp256k1.h for more * information about it. This should never fail. */ return_val = secp256k1_context_randomize(ctx, randomize); assert(return_val); /*** Generate secret keys ***/ if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) { printf("Failed to generate randomness\n"); return 1; } /* If the secret key is zero or out of range (greater than secp256k1's * order), we fail. Note that the probability of this occurring is negligible * with a properly functioning random number generator. */ if (!secp256k1_ec_seckey_verify(ctx, seckey1) || !secp256k1_ec_seckey_verify(ctx, seckey2)) { printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n"); return 1; } /* Generate ElligatorSwift public keys. This should never fail with valid context and verified secret keys. Note that providing additional randomness (fourth parameter) is optional, but recommended. */ if (!fill_random(auxrand1, sizeof(auxrand1)) || !fill_random(auxrand2, sizeof(auxrand2))) { printf("Failed to generate randomness\n"); return 1; } return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey1, seckey1, auxrand1); assert(return_val); return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey2, seckey2, auxrand2); assert(return_val); /*** Create the shared secret on each side ***/ /* Perform x-only ECDH with seckey1 and ellswift_pubkey2. Should never fail * with a verified seckey and valid pubkey. Note that both parties pass both * EllSwift pubkeys in the same order; the pubkey of the calling party is * determined by the "party" boolean (sixth parameter). */ return_val = secp256k1_ellswift_xdh(ctx, shared_secret1, ellswift_pubkey1, ellswift_pubkey2, seckey1, 0, secp256k1_ellswift_xdh_hash_function_bip324, NULL); assert(return_val); /* Perform x-only ECDH with seckey2 and ellswift_pubkey1. Should never fail * with a verified seckey and valid pubkey. */ return_val = secp256k1_ellswift_xdh(ctx, shared_secret2, ellswift_pubkey1, ellswift_pubkey2, seckey2, 1, secp256k1_ellswift_xdh_hash_function_bip324, NULL); assert(return_val); /* Both parties should end up with the same shared secret */ return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1)); assert(return_val == 0); printf( " Secret Key1: "); print_hex(seckey1, sizeof(seckey1)); printf( "EllSwift Pubkey1: "); print_hex(ellswift_pubkey1, sizeof(ellswift_pubkey1)); printf("\n Secret Key2: "); print_hex(seckey2, sizeof(seckey2)); printf( "EllSwift Pubkey2: "); print_hex(ellswift_pubkey2, sizeof(ellswift_pubkey2)); printf("\n Shared Secret: "); print_hex(shared_secret1, sizeof(shared_secret1)); /* This will clear everything from the context and free the memory */ secp256k1_context_destroy(ctx); /* It's best practice to try to clear secrets from memory after using them. * This is done because some bugs can allow an attacker to leak memory, for * example through "out of bounds" array access (see Heartbleed), or the OS * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. * * Here we are preventing these writes from being optimized out, as any good compiler * will remove any writes that aren't used. */ secure_erase(seckey1, sizeof(seckey1)); secure_erase(seckey2, sizeof(seckey2)); secure_erase(shared_secret1, sizeof(shared_secret1)); secure_erase(shared_secret2, sizeof(shared_secret2)); return 0; }