#!/usr/bin/env python3
# Copyright (c) 2014-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the wallet."""
from decimal import Decimal
from itertools import product

from test_framework.blocktools import COINBASE_MATURITY
from test_framework.descriptors import descsum_create
from test_framework.messages import (
    COIN,
    DEFAULT_ANCESTOR_LIMIT,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
    assert_array_result,
    assert_equal,
    assert_fee_amount,
    assert_raises_rpc_error,
)
from test_framework.wallet_util import test_address
from test_framework.wallet import MiniWallet

NOT_A_NUMBER_OR_STRING = "Amount is not a number or string"
OUT_OF_RANGE = "Amount out of range"


class WalletTest(BitcoinTestFramework):
    def add_options(self, parser):
        self.add_wallet_options(parser)

    def set_test_params(self):
        self.num_nodes = 4
        # whitelist peers to speed up tx relay / mempool sync
        self.noban_tx_relay = True
        self.extra_args = [[
            "-dustrelayfee=0", "-walletrejectlongchains=0"
        ]] * self.num_nodes
        self.setup_clean_chain = True
        self.supports_cli = False

    def skip_test_if_missing_module(self):
        self.skip_if_no_wallet()

    def setup_network(self):
        self.setup_nodes()
        # Only need nodes 0-2 running at start of test
        self.stop_node(3)
        self.connect_nodes(0, 1)
        self.connect_nodes(1, 2)
        self.connect_nodes(0, 2)
        self.sync_all(self.nodes[0:3])

    def check_fee_amount(self, curr_balance, balance_with_fee, fee_per_byte, tx_size):
        """Return curr_balance after asserting the fee was in range"""
        fee = balance_with_fee - curr_balance
        assert_fee_amount(fee, tx_size, fee_per_byte * 1000)
        return curr_balance

    def get_vsize(self, txn):
        return self.nodes[0].decoderawtransaction(txn)['vsize']

    def run_test(self):

        # Check that there's no UTXO on none of the nodes
        assert_equal(len(self.nodes[0].listunspent()), 0)
        assert_equal(len(self.nodes[1].listunspent()), 0)
        assert_equal(len(self.nodes[2].listunspent()), 0)

        self.log.info("Mining blocks...")

        self.generate(self.nodes[0], 1, sync_fun=self.no_op)

        walletinfo = self.nodes[0].getwalletinfo()
        assert_equal(walletinfo['immature_balance'], 50)
        assert_equal(walletinfo['balance'], 0)

        self.sync_all(self.nodes[0:3])
        self.generate(self.nodes[1], COINBASE_MATURITY + 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))

        assert_equal(self.nodes[0].getbalance(), 50)
        assert_equal(self.nodes[1].getbalance(), 50)
        assert_equal(self.nodes[2].getbalance(), 0)

        # Check that only first and second nodes have UTXOs
        utxos = self.nodes[0].listunspent()
        assert_equal(len(utxos), 1)
        assert_equal(len(self.nodes[1].listunspent()), 1)
        assert_equal(len(self.nodes[2].listunspent()), 0)

        self.log.info("Test gettxout")
        confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"]
        # First, outputs that are unspent both in the chain and in the
        # mempool should appear with or without include_mempool
        txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=False)
        assert_equal(txout['value'], 50)
        txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=True)
        assert_equal(txout['value'], 50)

        # Send 21 BTC from 0 to 2 using sendtoaddress call.
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11)
        mempool_txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10)

        self.log.info("Test gettxout (second part)")
        # utxo spent in mempool should be visible if you exclude mempool
        # but invisible if you include mempool
        txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False)
        assert_equal(txout['value'], 50)
        txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index)  # by default include_mempool=True
        assert txout is None
        txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True)
        assert txout is None
        # new utxo from mempool should be invisible if you exclude mempool
        # but visible if you include mempool
        txout = self.nodes[0].gettxout(mempool_txid, 0, False)
        assert txout is None
        txout1 = self.nodes[0].gettxout(mempool_txid, 0, True)
        txout2 = self.nodes[0].gettxout(mempool_txid, 1, True)
        # note the mempool tx will have randomly assigned indices
        # but 10 will go to node2 and the rest will go to node0
        balance = self.nodes[0].getbalance()
        assert_equal(set([txout1['value'], txout2['value']]), set([10, balance]))
        walletinfo = self.nodes[0].getwalletinfo()
        assert_equal(walletinfo['immature_balance'], 0)

        # Have node0 mine a block, thus it will collect its own fee.
        self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))

        # Exercise locking of unspent outputs
        unspent_0 = self.nodes[2].listunspent()[0]
        unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]}
        # Trying to unlock an output which isn't locked should error
        assert_raises_rpc_error(-8, "Invalid parameter, expected locked output", self.nodes[2].lockunspent, True, [unspent_0])

        # Locking an already-locked output should error
        self.nodes[2].lockunspent(False, [unspent_0])
        assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0])

        # Restarting the node should clear the lock
        self.restart_node(2)
        self.nodes[2].lockunspent(False, [unspent_0])

        # Unloading and reloating the wallet should clear the lock
        assert_equal(self.nodes[0].listwallets(), [self.default_wallet_name])
        self.nodes[2].unloadwallet(self.default_wallet_name)
        self.nodes[2].loadwallet(self.default_wallet_name)
        assert_equal(len(self.nodes[2].listlockunspent()), 0)

        # Locking non-persistently, then re-locking persistently, is allowed
        self.nodes[2].lockunspent(False, [unspent_0])
        self.nodes[2].lockunspent(False, [unspent_0], True)

        # Restarting the node with the lock written to the wallet should keep the lock
        self.restart_node(2, ["-walletrejectlongchains=0"])
        assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0])

        # Unloading and reloading the wallet with a persistent lock should keep the lock
        self.nodes[2].unloadwallet(self.default_wallet_name)
        self.nodes[2].loadwallet(self.default_wallet_name)
        assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0])

        # Locked outputs should not be used, even if they are the only available funds
        assert_raises_rpc_error(-6, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20)
        assert_equal([unspent_0], self.nodes[2].listlockunspent())

        # Unlocking should remove the persistent lock
        self.nodes[2].lockunspent(True, [unspent_0])
        self.restart_node(2)
        assert_equal(len(self.nodes[2].listlockunspent()), 0)

        # Reconnect node 2 after restarts
        self.connect_nodes(1, 2)
        self.connect_nodes(0, 2)

        assert_raises_rpc_error(-8, "txid must be of length 64 (not 34, for '0000000000000000000000000000000000')",
                                self.nodes[2].lockunspent, False,
                                [{"txid": "0000000000000000000000000000000000", "vout": 0}])
        assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')",
                                self.nodes[2].lockunspent, False,
                                [{"txid": "ZZZ0000000000000000000000000000000000000000000000000000000000000", "vout": 0}])
        assert_raises_rpc_error(-8, "Invalid parameter, unknown transaction",
                                self.nodes[2].lockunspent, False,
                                [{"txid": "0000000000000000000000000000000000000000000000000000000000000000", "vout": 0}])
        assert_raises_rpc_error(-8, "Invalid parameter, vout index out of bounds",
                                self.nodes[2].lockunspent, False,
                                [{"txid": unspent_0["txid"], "vout": 999}])

        # The lock on a manually selected output is ignored
        unspent_0 = self.nodes[1].listunspent()[0]
        self.nodes[1].lockunspent(False, [unspent_0])
        tx = self.nodes[1].createrawtransaction([unspent_0], { self.nodes[1].getnewaddress() : 1 })
        self.nodes[1].fundrawtransaction(tx,{"lockUnspents": True})

        # fundrawtransaction can lock an input
        self.nodes[1].lockunspent(True, [unspent_0])
        assert_equal(len(self.nodes[1].listlockunspent()), 0)
        tx = self.nodes[1].fundrawtransaction(tx,{"lockUnspents": True})['hex']
        assert_equal(len(self.nodes[1].listlockunspent()), 1)

        # Send transaction
        tx = self.nodes[1].signrawtransactionwithwallet(tx)["hex"]
        self.nodes[1].sendrawtransaction(tx)
        assert_equal(len(self.nodes[1].listlockunspent()), 0)

        # Have node1 generate 100 blocks (so node0 can recover the fee)
        self.generate(self.nodes[1], COINBASE_MATURITY, sync_fun=lambda: self.sync_all(self.nodes[0:3]))

        # node0 should end up with 100 btc in block rewards plus fees, but
        # minus the 21 plus fees sent to node2
        assert_equal(self.nodes[0].getbalance(), 100 - 21)
        assert_equal(self.nodes[2].getbalance(), 21)

        # Node0 should have two unspent outputs.
        # Create a couple of transactions to send them to node2, submit them through
        # node1, and make sure both node0 and node2 pick them up properly:
        node0utxos = self.nodes[0].listunspent(1)
        assert_equal(len(node0utxos), 2)

        # create both transactions
        txns_to_send = []
        for utxo in node0utxos:
            inputs = []
            outputs = {}
            inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]})
            outputs[self.nodes[2].getnewaddress()] = utxo["amount"] - 3
            raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
            txns_to_send.append(self.nodes[0].signrawtransactionwithwallet(raw_tx))

        # Have node 1 (miner) send the transactions
        self.nodes[1].sendrawtransaction(hexstring=txns_to_send[0]["hex"], maxfeerate=0)
        self.nodes[1].sendrawtransaction(hexstring=txns_to_send[1]["hex"], maxfeerate=0)

        # Have node1 mine a block to confirm transactions:
        self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))

        assert_equal(self.nodes[0].getbalance(), 0)
        assert_equal(self.nodes[2].getbalance(), 94)

        # Verify that a spent output cannot be locked anymore
        spent_0 = {"txid": node0utxos[0]["txid"], "vout": node0utxos[0]["vout"]}
        assert_raises_rpc_error(-8, "Invalid parameter, expected unspent output", self.nodes[0].lockunspent, False, [spent_0])

        # Send 10 BTC normal
        address = self.nodes[0].getnewaddress("test")
        fee_per_byte = Decimal('0.001') / 1000
        self.nodes[2].settxfee(fee_per_byte * 1000)
        txid = self.nodes[2].sendtoaddress(address, 10, "", "", False)
        self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), Decimal('84'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
        assert_equal(self.nodes[0].getbalance(), Decimal('10'))

        # Send 10 BTC with subtract fee from amount
        txid = self.nodes[2].sendtoaddress(address, 10, "", "", True)
        self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        node_2_bal -= Decimal('10')
        assert_equal(self.nodes[2].getbalance(), node_2_bal)
        node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal('20'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))

        self.log.info("Test sendmany")

        # Sendmany 10 BTC
        txid = self.nodes[2].sendmany('', {address: 10}, 0, "", [])
        self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        node_0_bal += Decimal('10')
        node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), node_2_bal - Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
        assert_equal(self.nodes[0].getbalance(), node_0_bal)

        # Sendmany 10 BTC with subtract fee from amount
        txid = self.nodes[2].sendmany('', {address: 10}, 0, "", [address])
        self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        node_2_bal -= Decimal('10')
        assert_equal(self.nodes[2].getbalance(), node_2_bal)
        node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))

        # Sendmany 5 BTC to two addresses with subtracting fee from both addresses
        a0 = self.nodes[0].getnewaddress()
        a1 = self.nodes[0].getnewaddress()
        txid = self.nodes[2].sendmany(dummy='', amounts={a0: 5, a1: 5}, subtractfeefrom=[a0, a1])
        self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        node_2_bal -= Decimal('10')
        assert_equal(self.nodes[2].getbalance(), node_2_bal)
        tx = self.nodes[2].gettransaction(txid)
        node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(tx['hex']))
        assert_equal(self.nodes[0].getbalance(), node_0_bal)
        expected_bal = Decimal('5') + (tx['fee'] / 2)
        assert_equal(self.nodes[0].getreceivedbyaddress(a0), expected_bal)
        assert_equal(self.nodes[0].getreceivedbyaddress(a1), expected_bal)

        self.log.info("Test sendmany with fee_rate param (explicit fee rate in sat/vB)")
        fee_rate_sat_vb = 2
        fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8
        explicit_fee_rate_btc_kvb = Decimal(fee_rate_btc_kvb) / 1000

        # Test passing fee_rate as a string
        txid = self.nodes[2].sendmany(amounts={address: 10}, fee_rate=str(fee_rate_sat_vb))
        self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        balance = self.nodes[2].getbalance()
        node_2_bal = self.check_fee_amount(balance, node_2_bal - Decimal('10'), explicit_fee_rate_btc_kvb, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
        assert_equal(balance, node_2_bal)
        node_0_bal += Decimal('10')
        assert_equal(self.nodes[0].getbalance(), node_0_bal)

        # Test passing fee_rate as an integer
        amount = Decimal("0.0001")
        txid = self.nodes[2].sendmany(amounts={address: amount}, fee_rate=fee_rate_sat_vb)
        self.generate(self.nodes[2], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        balance = self.nodes[2].getbalance()
        node_2_bal = self.check_fee_amount(balance, node_2_bal - amount, explicit_fee_rate_btc_kvb, self.get_vsize(self.nodes[2].gettransaction(txid)['hex']))
        assert_equal(balance, node_2_bal)
        node_0_bal += amount
        assert_equal(self.nodes[0].getbalance(), node_0_bal)

        assert_raises_rpc_error(-8, "Unknown named parameter feeRate", self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=1, feeRate=1)

        # Test setting explicit fee rate just below the minimum.
        self.log.info("Test sendmany raises 'fee rate too low' if fee_rate of 0.99999999 is passed")
        assert_raises_rpc_error(-6, "Fee rate (0.999 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)",
            self.nodes[2].sendmany, amounts={address: 10}, fee_rate=0.999)

        self.log.info("Test sendmany raises if an invalid fee_rate is passed")
        # Test fee_rate with zero values.
        msg = "Fee rate (0.000 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)"
        for zero_value in [0, 0.000, 0.00000000, "0", "0.000", "0.00000000"]:
            assert_raises_rpc_error(-6, msg, self.nodes[2].sendmany, amounts={address: 1}, fee_rate=zero_value)
        msg = "Invalid amount"
        # Test fee_rate values that don't pass fixed-point parsing checks.
        for invalid_value in ["", 0.000000001, 1e-09, 1.111111111, 1111111111111111, "31.999999999999999999999"]:
            assert_raises_rpc_error(-3, msg, self.nodes[2].sendmany, amounts={address: 1.0}, fee_rate=invalid_value)
        # Test fee_rate values that cannot be represented in sat/vB.
        for invalid_value in [0.0001, 0.00000001, 0.00099999, 31.99999999]:
            assert_raises_rpc_error(-3, msg, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=invalid_value)
        # Test fee_rate out of range (negative number).
        assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=-1)
        # Test type error.
        for invalid_value in [True, {"foo": "bar"}]:
            assert_raises_rpc_error(-3, NOT_A_NUMBER_OR_STRING, self.nodes[2].sendmany, amounts={address: 10}, fee_rate=invalid_value)

        self.log.info("Test sendmany raises if an invalid conf_target or estimate_mode is passed")
        for target, mode in product([-1, 0, 1009], ["economical", "conservative"]):
            assert_raises_rpc_error(-8, "Invalid conf_target, must be between 1 and 1008",  # max value of 1008 per src/policy/fees.h
                self.nodes[2].sendmany, amounts={address: 1}, conf_target=target, estimate_mode=mode)
        for target, mode in product([-1, 0], ["btc/kb", "sat/b"]):
            assert_raises_rpc_error(-8, 'Invalid estimate_mode parameter, must be one of: "unset", "economical", "conservative"',
                self.nodes[2].sendmany, amounts={address: 1}, conf_target=target, estimate_mode=mode)

        self.start_node(3, self.nodes[3].extra_args)
        self.connect_nodes(0, 3)
        self.sync_all()

        # check if we can list zero value tx as available coins
        # 1. create raw_tx
        # 2. hex-changed one output to 0.0
        # 3. sign and send
        # 4. check if recipient (node0) can list the zero value tx
        usp = self.nodes[1].listunspent(query_options={'minimumAmount': '49.998'})[0]
        inputs = [{"txid": usp['txid'], "vout": usp['vout']}]
        outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11}

        raw_tx = self.nodes[1].createrawtransaction(inputs, outputs).replace("c0833842", "00000000")  # replace 11.11 with 0.0 (int32)
        signed_raw_tx = self.nodes[1].signrawtransactionwithwallet(raw_tx)
        decoded_raw_tx = self.nodes[1].decoderawtransaction(signed_raw_tx['hex'])
        zero_value_txid = decoded_raw_tx['txid']
        self.nodes[1].sendrawtransaction(signed_raw_tx['hex'])

        self.sync_all()
        self.generate(self.nodes[1], 1)  # mine a block

        unspent_txs = self.nodes[0].listunspent()  # zero value tx must be in listunspents output
        found = False
        for uTx in unspent_txs:
            if uTx['txid'] == zero_value_txid:
                found = True
                assert_equal(uTx['amount'], Decimal('0'))
        assert found

        self.log.info("Test -walletbroadcast")
        self.stop_nodes()
        self.start_node(0, ["-walletbroadcast=0"])
        self.start_node(1, ["-walletbroadcast=0"])
        self.start_node(2, ["-walletbroadcast=0"])
        self.connect_nodes(0, 1)
        self.connect_nodes(1, 2)
        self.connect_nodes(0, 2)
        self.sync_all(self.nodes[0:3])

        txid_not_broadcast = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2)
        tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast)
        self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))  # mine a block, tx should not be in there
        assert_equal(self.nodes[2].getbalance(), node_2_bal)  # should not be changed because tx was not broadcasted

        # now broadcast from another node, mine a block, sync, and check the balance
        self.nodes[1].sendrawtransaction(tx_obj_not_broadcast['hex'])
        self.generate(self.nodes[1], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        node_2_bal += 2
        tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast)
        assert_equal(self.nodes[2].getbalance(), node_2_bal)

        # create another tx
        self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2)

        # restart the nodes with -walletbroadcast=1
        self.stop_nodes()
        self.start_node(0)
        self.start_node(1)
        self.start_node(2)
        self.connect_nodes(0, 1)
        self.connect_nodes(1, 2)
        self.connect_nodes(0, 2)
        self.sync_blocks(self.nodes[0:3])

        self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_blocks(self.nodes[0:3]))
        node_2_bal += 2

        # tx should be added to balance because after restarting the nodes tx should be broadcast
        assert_equal(self.nodes[2].getbalance(), node_2_bal)

        # send a tx with value in a string (PR#6380 +)
        txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2")
        tx_obj = self.nodes[0].gettransaction(txid)
        assert_equal(tx_obj['amount'], Decimal('-2'))

        txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "0.0001")
        tx_obj = self.nodes[0].gettransaction(txid)
        assert_equal(tx_obj['amount'], Decimal('-0.0001'))

        # check if JSON parser can handle scientific notation in strings
        txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "1e-4")
        tx_obj = self.nodes[0].gettransaction(txid)
        assert_equal(tx_obj['amount'], Decimal('-0.0001'))

        # General checks for errors from incorrect inputs
        # This will raise an exception because the amount is negative
        assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "-1")

        # This will raise an exception because the amount type is wrong
        assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4")

        # This will raise an exception since generate does not accept a string
        assert_raises_rpc_error(-3, "not of expected type number", self.generate, self.nodes[0], "2")

        if not self.options.descriptors:

            # This will raise an exception for the invalid private key format
            assert_raises_rpc_error(-5, "Invalid private key encoding", self.nodes[0].importprivkey, "invalid")

            # This will raise an exception for importing an address with the PS2H flag
            temp_address = self.nodes[1].getnewaddress("", "p2sh-segwit")
            assert_raises_rpc_error(-5, "Cannot use the p2sh flag with an address - use a script instead", self.nodes[0].importaddress, temp_address, "label", False, True)

            # This will raise an exception for attempting to dump the private key of an address you do not own
            assert_raises_rpc_error(-3, "Address does not refer to a key", self.nodes[0].dumpprivkey, temp_address)

            # This will raise an exception for attempting to get the private key of an invalid Bitcoin address
            assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].dumpprivkey, "invalid")

            # This will raise an exception for attempting to set a label for an invalid Bitcoin address
            assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].setlabel, "invalid address", "label")

            # This will raise an exception for importing an invalid address
            assert_raises_rpc_error(-5, "Invalid Bitcoin address or script", self.nodes[0].importaddress, "invalid")

            # This will raise an exception for attempting to import a pubkey that isn't in hex
            assert_raises_rpc_error(-5, 'Pubkey "not hex" must be a hex string', self.nodes[0].importpubkey, "not hex")

            # This will raise exceptions for importing a pubkeys with invalid length / invalid coordinates
            too_short_pubkey = "5361746f736869204e616b616d6f746f"
            assert_raises_rpc_error(-5, f'Pubkey "{too_short_pubkey}" must have a length of either 33 or 65 bytes', self.nodes[0].importpubkey, too_short_pubkey)
            not_on_curve_pubkey = bytes([4] + [0]*64).hex()  # pubkey with coordinates (0,0) is not on curve
            assert_raises_rpc_error(-5, f'Pubkey "{not_on_curve_pubkey}" must be cryptographically valid', self.nodes[0].importpubkey, not_on_curve_pubkey)

            # Bech32m addresses cannot be imported into a legacy wallet
            assert_raises_rpc_error(-5, "Bech32m addresses cannot be imported into legacy wallets", self.nodes[0].importaddress, "bcrt1p0xlxvlhemja6c4dqv22uapctqupfhlxm9h8z3k2e72q4k9hcz7vqc8gma6")

            # Import address and private key to check correct behavior of spendable unspents
            # 1. Send some coins to generate new UTXO
            address_to_import = self.nodes[2].getnewaddress()
            utxo = self.create_outpoints(self.nodes[0], outputs=[{address_to_import: 1}])[0]
            self.sync_mempools(self.nodes[0:3])
            self.nodes[2].lockunspent(False, [utxo])
            self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))

            self.log.info("Test sendtoaddress with fee_rate param (explicit fee rate in sat/vB)")
            prebalance = self.nodes[2].getbalance()
            assert prebalance > 2
            address = self.nodes[1].getnewaddress()
            amount = 3
            fee_rate_sat_vb = 2
            fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8
            # Test passing fee_rate as an integer
            txid = self.nodes[2].sendtoaddress(address=address, amount=amount, fee_rate=fee_rate_sat_vb)
            tx_size = self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])
            self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
            postbalance = self.nodes[2].getbalance()
            fee = prebalance - postbalance - Decimal(amount)
            assert_fee_amount(fee, tx_size, Decimal(fee_rate_btc_kvb))

            prebalance = self.nodes[2].getbalance()
            amount = Decimal("0.001")
            fee_rate_sat_vb = 1.23
            fee_rate_btc_kvb = fee_rate_sat_vb * 1e3 / 1e8
            # Test passing fee_rate as a string
            txid = self.nodes[2].sendtoaddress(address=address, amount=amount, fee_rate=str(fee_rate_sat_vb))
            tx_size = self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])
            self.generate(self.nodes[0], 1, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
            postbalance = self.nodes[2].getbalance()
            fee = prebalance - postbalance - amount
            assert_fee_amount(fee, tx_size, Decimal(fee_rate_btc_kvb))

            # Test setting explicit fee rate just below the minimum.
            self.log.info("Test sendtoaddress raises 'fee rate too low' if fee_rate of 0.99999999 is passed")
            assert_raises_rpc_error(-6, "Fee rate (0.999 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)",
                self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=0.999)

            self.log.info("Test sendtoaddress raises if an invalid fee_rate is passed")
            # Test fee_rate with zero values.
            msg = "Fee rate (0.000 sat/vB) is lower than the minimum fee rate setting (1.000 sat/vB)"
            for zero_value in [0, 0.000, 0.00000000, "0", "0.000", "0.00000000"]:
                assert_raises_rpc_error(-6, msg, self.nodes[2].sendtoaddress, address=address, amount=1, fee_rate=zero_value)
            msg = "Invalid amount"
            # Test fee_rate values that don't pass fixed-point parsing checks.
            for invalid_value in ["", 0.000000001, 1e-09, 1.111111111, 1111111111111111, "31.999999999999999999999"]:
                assert_raises_rpc_error(-3, msg, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=invalid_value)
            # Test fee_rate values that cannot be represented in sat/vB.
            for invalid_value in [0.0001, 0.00000001, 0.00099999, 31.99999999]:
                assert_raises_rpc_error(-3, msg, self.nodes[2].sendtoaddress, address=address, amount=10, fee_rate=invalid_value)
            # Test fee_rate out of range (negative number).
            assert_raises_rpc_error(-3, OUT_OF_RANGE, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=-1)
            # Test type error.
            for invalid_value in [True, {"foo": "bar"}]:
                assert_raises_rpc_error(-3, NOT_A_NUMBER_OR_STRING, self.nodes[2].sendtoaddress, address=address, amount=1.0, fee_rate=invalid_value)

            self.log.info("Test sendtoaddress raises if an invalid conf_target or estimate_mode is passed")
            for target, mode in product([-1, 0, 1009], ["economical", "conservative"]):
                assert_raises_rpc_error(-8, "Invalid conf_target, must be between 1 and 1008",  # max value of 1008 per src/policy/fees.h
                    self.nodes[2].sendtoaddress, address=address, amount=1, conf_target=target, estimate_mode=mode)
            for target, mode in product([-1, 0], ["btc/kb", "sat/b"]):
                assert_raises_rpc_error(-8, 'Invalid estimate_mode parameter, must be one of: "unset", "economical", "conservative"',
                    self.nodes[2].sendtoaddress, address=address, amount=1, conf_target=target, estimate_mode=mode)

            # 2. Import address from node2 to node1
            self.nodes[1].importaddress(address_to_import)

            # 3. Validate that the imported address is watch-only on node1
            assert self.nodes[1].getaddressinfo(address_to_import)["iswatchonly"]

            # 4. Check that the unspents after import are not spendable
            assert_array_result(self.nodes[1].listunspent(),
                                {"address": address_to_import},
                                {"spendable": False})

            # 5. Import private key of the previously imported address on node1
            priv_key = self.nodes[2].dumpprivkey(address_to_import)
            self.nodes[1].importprivkey(priv_key)

            # 6. Check that the unspents are now spendable on node1
            assert_array_result(self.nodes[1].listunspent(),
                                {"address": address_to_import},
                                {"spendable": True})

        # Mine a block from node0 to an address from node1
        coinbase_addr = self.nodes[1].getnewaddress()
        block_hash = self.generatetoaddress(self.nodes[0], 1, coinbase_addr, sync_fun=lambda: self.sync_all(self.nodes[0:3]))[0]
        coinbase_txid = self.nodes[0].getblock(block_hash)['tx'][0]

        # Check that the txid and balance is found by node1
        self.nodes[1].gettransaction(coinbase_txid)

        # check if wallet or blockchain maintenance changes the balance
        self.sync_all(self.nodes[0:3])
        blocks = self.generate(self.nodes[0], 2, sync_fun=lambda: self.sync_all(self.nodes[0:3]))
        balance_nodes = [self.nodes[i].getbalance() for i in range(3)]
        block_count = self.nodes[0].getblockcount()

        # Check modes:
        #   - True: unicode escaped as \u....
        #   - False: unicode directly as UTF-8
        for mode in [True, False]:
            self.nodes[0].rpc.ensure_ascii = mode
            # unicode check: Basic Multilingual Plane, Supplementary Plane respectively
            for label in [u'рыба', u'𝅘𝅥𝅯']:
                addr = self.nodes[0].getnewaddress()
                self.nodes[0].setlabel(addr, label)
                test_address(self.nodes[0], addr, labels=[label])
                assert label in self.nodes[0].listlabels()
        self.nodes[0].rpc.ensure_ascii = True  # restore to default

        # -reindex tests
        chainlimit = 6
        self.log.info("Test -reindex")
        self.stop_nodes()
        # set lower ancestor limit for later
        self.start_node(0, ['-reindex', "-walletrejectlongchains=0", "-limitancestorcount=" + str(chainlimit)])
        self.start_node(1, ['-reindex', "-limitancestorcount=" + str(chainlimit)])
        self.start_node(2, ['-reindex', "-limitancestorcount=" + str(chainlimit)])
        # reindex will leave rpc warm up "early"; Wait for it to finish
        self.wait_until(lambda: [block_count] * 3 == [self.nodes[i].getblockcount() for i in range(3)])
        assert_equal(balance_nodes, [self.nodes[i].getbalance() for i in range(3)])

        # Exercise listsinceblock with the last two blocks
        coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0])
        assert_equal(coinbase_tx_1["lastblock"], blocks[1])
        assert_equal(len(coinbase_tx_1["transactions"]), 1)
        assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1])
        assert_equal(len(self.nodes[0].listsinceblock(blocks[1])["transactions"]), 0)

        # ==Check that wallet prefers to use coins that don't exceed mempool limits =====

        # Get all non-zero utxos together and split into two chains
        chain_addrs = [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()]
        self.nodes[0].sendall(recipients=chain_addrs)
        self.generate(self.nodes[0], 1, sync_fun=self.no_op)

        # Make a long chain of unconfirmed payments without hitting mempool limit
        # Each tx we make leaves only one output of change on a chain 1 longer
        # Since the amount to send is always much less than the outputs, we only ever need one output
        # So we should be able to generate exactly chainlimit txs for each original output
        sending_addr = self.nodes[1].getnewaddress()
        txid_list = []
        for _ in range(chainlimit * 2):
            txid_list.append(self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001')))
        assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit * 2)
        assert_equal(len(txid_list), chainlimit * 2)

        # Without walletrejectlongchains, we will still generate a txid
        # The tx will be stored in the wallet but not accepted to the mempool
        extra_txid = self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001'))
        assert extra_txid not in self.nodes[0].getrawmempool()
        assert extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()]
        self.nodes[0].abandontransaction(extra_txid)
        total_txs = len(self.nodes[0].listtransactions("*", 99999))

        # Try with walletrejectlongchains
        # Double chain limit but require combining inputs, so we pass AttemptSelection
        self.stop_node(0)
        extra_args = ["-walletrejectlongchains", "-limitancestorcount=" + str(2 * chainlimit)]
        self.start_node(0, extra_args=extra_args)

        # wait until the wallet has submitted all transactions to the mempool
        self.wait_until(lambda: len(self.nodes[0].getrawmempool()) == chainlimit * 2)

        # Prevent potential race condition when calling wallet RPCs right after restart
        self.nodes[0].syncwithvalidationinterfacequeue()

        node0_balance = self.nodes[0].getbalance()
        # With walletrejectlongchains we will not create the tx and store it in our wallet.
        assert_raises_rpc_error(-6, f"too many unconfirmed ancestors [limit: {chainlimit * 2}]", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01'))

        # Verify nothing new in wallet
        assert_equal(total_txs, len(self.nodes[0].listtransactions("*", 99999)))

        # Test getaddressinfo on external address. Note that these addresses are taken from disablewallet.py
        assert_raises_rpc_error(-5, "Invalid or unsupported Base58-encoded address.", self.nodes[0].getaddressinfo, "3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy")
        address_info = self.nodes[0].getaddressinfo("mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ")
        assert_equal(address_info['address'], "mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ")
        assert_equal(address_info["scriptPubKey"], "76a9144e3854046c7bd1594ac904e4793b6a45b36dea0988ac")
        assert not address_info["ismine"]
        assert not address_info["iswatchonly"]
        assert not address_info["isscript"]
        assert not address_info["ischange"]

        # Test getaddressinfo 'ischange' field on change address.
        self.generate(self.nodes[0], 1, sync_fun=self.no_op)
        destination = self.nodes[1].getnewaddress()
        txid = self.nodes[0].sendtoaddress(destination, 0.123)
        tx = self.nodes[0].gettransaction(txid=txid, verbose=True)['decoded']
        output_addresses = [vout['scriptPubKey']['address'] for vout in tx["vout"]]
        assert len(output_addresses) > 1
        for address in output_addresses:
            ischange = self.nodes[0].getaddressinfo(address)['ischange']
            assert_equal(ischange, address != destination)
            if ischange:
                change = address
        self.nodes[0].setlabel(change, 'foobar')
        assert_equal(self.nodes[0].getaddressinfo(change)['ischange'], False)

        # Test gettransaction response with different arguments.
        self.log.info("Testing gettransaction response with different arguments...")
        self.nodes[0].setlabel(change, 'baz')
        baz = self.nodes[0].listtransactions(label="baz", count=1)[0]
        expected_receive_vout = {"label":    "baz",
                                 "address":  baz["address"],
                                 "amount":   baz["amount"],
                                 "category": baz["category"],
                                 "vout":     baz["vout"]}
        expected_fields = frozenset({'amount', 'bip125-replaceable', 'confirmations', 'details', 'fee',
                                     'hex', 'lastprocessedblock', 'time', 'timereceived', 'trusted', 'txid', 'wtxid', 'walletconflicts', 'mempoolconflicts'})
        verbose_field = "decoded"
        expected_verbose_fields = expected_fields | {verbose_field}

        self.log.debug("Testing gettransaction response without verbose")
        tx = self.nodes[0].gettransaction(txid=txid)
        assert_equal(set([*tx]), expected_fields)
        assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout)

        self.log.debug("Testing gettransaction response with verbose set to False")
        tx = self.nodes[0].gettransaction(txid=txid, verbose=False)
        assert_equal(set([*tx]), expected_fields)
        assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout)

        self.log.debug("Testing gettransaction response with verbose set to True")
        tx = self.nodes[0].gettransaction(txid=txid, verbose=True)
        assert_equal(set([*tx]), expected_verbose_fields)
        assert_array_result(tx["details"], {"category": "receive"}, expected_receive_vout)
        assert_equal(tx[verbose_field], self.nodes[0].decoderawtransaction(tx["hex"]))

        self.log.info("Test send* RPCs with verbose=True")
        address = self.nodes[0].getnewaddress("test")
        txid_feeReason_one = self.nodes[2].sendtoaddress(address=address, amount=5, verbose=True)
        assert_equal(txid_feeReason_one["fee_reason"], "Fallback fee")
        txid_feeReason_two = self.nodes[2].sendmany(dummy='', amounts={address: 5}, verbose=True)
        assert_equal(txid_feeReason_two["fee_reason"], "Fallback fee")
        self.log.info("Test send* RPCs with verbose=False")
        txid_feeReason_three = self.nodes[2].sendtoaddress(address=address, amount=5, verbose=False)
        assert_equal(self.nodes[2].gettransaction(txid_feeReason_three)['txid'], txid_feeReason_three)
        txid_feeReason_four = self.nodes[2].sendmany(dummy='', amounts={address: 5}, verbose=False)
        assert_equal(self.nodes[2].gettransaction(txid_feeReason_four)['txid'], txid_feeReason_four)

        if self.options.descriptors:
            self.log.info("Testing 'listunspent' outputs the parent descriptor(s) of coins")
            # Create two multisig descriptors, and send a UTxO each.
            multi_a = descsum_create("wsh(multi(1,tpubD6NzVbkrYhZ4YBNjUo96Jxd1u4XKWgnoc7LsA1jz3Yc2NiDbhtfBhaBtemB73n9V5vtJHwU6FVXwggTbeoJWQ1rzdz8ysDuQkpnaHyvnvzR/*,tpubD6NzVbkrYhZ4YHdDGMAYGaWxMSC1B6tPRTHuU5t3BcfcS3nrF523iFm5waFd1pP3ZvJt4Jr8XmCmsTBNx5suhcSgtzpGjGMASR3tau1hJz4/*))")
            multi_b = descsum_create("wsh(multi(1,tpubD6NzVbkrYhZ4YHdDGMAYGaWxMSC1B6tPRTHuU5t3BcfcS3nrF523iFm5waFd1pP3ZvJt4Jr8XmCmsTBNx5suhcSgtzpGjGMASR3tau1hJz4/*,tpubD6NzVbkrYhZ4Y2RLiuEzNQkntjmsLpPYDm3LTRBYynUQtDtpzeUKAcb9sYthSFL3YR74cdFgF5mW8yKxv2W2CWuZDFR2dUpE5PF9kbrVXNZ/*))")
            addr_a = self.nodes[0].deriveaddresses(multi_a, 0)[0]
            addr_b = self.nodes[0].deriveaddresses(multi_b, 0)[0]
            txid_a = self.nodes[0].sendtoaddress(addr_a, 0.01)
            txid_b = self.nodes[0].sendtoaddress(addr_b, 0.01)
            self.generate(self.nodes[0], 1, sync_fun=self.no_op)
            # Now import the descriptors, make sure we can identify on which descriptor each coin was received.
            self.nodes[0].createwallet(wallet_name="wo", descriptors=True, disable_private_keys=True)
            wo_wallet = self.nodes[0].get_wallet_rpc("wo")
            wo_wallet.importdescriptors([
                {
                    "desc": multi_a,
                    "active": False,
                    "timestamp": "now",
                },
                {
                    "desc": multi_b,
                    "active": False,
                    "timestamp": "now",
                },
            ])
            coins = wo_wallet.listunspent(minconf=0)
            assert_equal(len(coins), 2)
            coin_a = next(c for c in coins if c["txid"] == txid_a)
            assert_equal(coin_a["parent_descs"][0], multi_a)
            coin_b = next(c for c in coins if c["txid"] == txid_b)
            assert_equal(coin_b["parent_descs"][0], multi_b)
            self.nodes[0].unloadwallet("wo")

        self.log.info("Test -spendzeroconfchange")
        self.restart_node(0, ["-spendzeroconfchange=0"])

        # create new wallet and fund it with a confirmed UTXO
        self.nodes[0].createwallet(wallet_name="zeroconf", load_on_startup=True)
        zeroconf_wallet = self.nodes[0].get_wallet_rpc("zeroconf")
        default_wallet = self.nodes[0].get_wallet_rpc(self.default_wallet_name)
        default_wallet.sendtoaddress(zeroconf_wallet.getnewaddress(), Decimal('1.0'))
        self.generate(self.nodes[0], 1, sync_fun=self.no_op)
        utxos = zeroconf_wallet.listunspent(minconf=0)
        assert_equal(len(utxos), 1)
        assert_equal(utxos[0]['confirmations'], 1)

        # spend confirmed UTXO to ourselves
        zeroconf_wallet.sendall(recipients=[zeroconf_wallet.getnewaddress()])
        utxos = zeroconf_wallet.listunspent(minconf=0)
        assert_equal(len(utxos), 1)
        assert_equal(utxos[0]['confirmations'], 0)
        # accounts for untrusted pending balance
        bal = zeroconf_wallet.getbalances()
        assert_equal(bal['mine']['trusted'], 0)
        assert_equal(bal['mine']['untrusted_pending'], utxos[0]['amount'])

        # spending an unconfirmed UTXO sent to ourselves should fail
        assert_raises_rpc_error(-6, "Insufficient funds", zeroconf_wallet.sendtoaddress, zeroconf_wallet.getnewaddress(), Decimal('0.5'))

        # check that it works again with -spendzeroconfchange set (=default)
        self.restart_node(0, ["-spendzeroconfchange=1"])
        zeroconf_wallet = self.nodes[0].get_wallet_rpc("zeroconf")
        utxos = zeroconf_wallet.listunspent(minconf=0)
        assert_equal(len(utxos), 1)
        assert_equal(utxos[0]['confirmations'], 0)
        # accounts for trusted balance
        bal = zeroconf_wallet.getbalances()
        assert_equal(bal['mine']['trusted'], utxos[0]['amount'])
        assert_equal(bal['mine']['untrusted_pending'], 0)

        zeroconf_wallet.sendtoaddress(zeroconf_wallet.getnewaddress(), Decimal('0.5'))

        self.test_chain_listunspent()

    def test_chain_listunspent(self):
        if not self.options.descriptors:
            return
        self.wallet = MiniWallet(self.nodes[0])
        self.nodes[0].get_wallet_rpc(self.default_wallet_name).sendtoaddress(self.wallet.get_address(), "5")
        self.generate(self.wallet, 1, sync_fun=self.no_op)
        self.nodes[0].createwallet("watch_wallet", disable_private_keys=True)
        watch_wallet = self.nodes[0].get_wallet_rpc("watch_wallet")
        watch_wallet.importaddress(self.wallet.get_address())

        # DEFAULT_ANCESTOR_LIMIT transactions off a confirmed tx should be fine
        chain = self.wallet.create_self_transfer_chain(chain_length=DEFAULT_ANCESTOR_LIMIT)
        ancestor_vsize = 0
        ancestor_fees = Decimal(0)

        for i, t in enumerate(chain):
            ancestor_vsize += t["tx"].get_vsize()
            ancestor_fees += t["fee"]
            self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=t["hex"])
            # Check that listunspent ancestor{count, size, fees} yield the correct results
            wallet_unspent = watch_wallet.listunspent(minconf=0)
            this_unspent = next(utxo_info for utxo_info in wallet_unspent if utxo_info["txid"] == t["txid"])
            assert_equal(this_unspent['ancestorcount'], i + 1)
            assert_equal(this_unspent['ancestorsize'], ancestor_vsize)
            assert_equal(this_unspent['ancestorfees'], ancestor_fees * COIN)


if __name__ == '__main__':
    WalletTest(__file__).main()